\(\int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [250]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 169 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}-\frac {2 \sin (c+d x)}{15 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {26 \sqrt {\sec (c+d x)} \sin (c+d x)}{15 d \sqrt {a+a \sec (c+d x)}} \] Output:

-2^(1/2)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec( 
d*x+c))^(1/2))/a^(1/2)/d+2/5*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c) 
)^(1/2)-2/15*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+26/15*se 
c(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.74 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.69 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {(29-2 \cos (c+d x)+3 \cos (2 (c+d x))) \sqrt {\sec (c+d x)} \sin (c+d x)+\frac {15 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)}{\sqrt {1-\sec (c+d x)}}}{15 d \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[1/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]
 

Output:

((29 - 2*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Sqrt[Sec[c + d*x]]*Sin[c + d*x 
] + (15*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]] 
]*Tan[c + d*x])/Sqrt[1 - Sec[c + d*x]])/(15*d*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.91 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.11, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4310, 3042, 4510, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4310

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a-4 a \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a-4 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}\)

\(\Big \downarrow \) 4510

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 \int -\frac {13 a^2-2 a^2 \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}}{5 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {13 a^2-2 a^2 \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {13 a^2-2 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {26 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {26 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-15 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}}{5 a}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {30 a^2 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {26 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}}{5 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {26 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {15 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}}{5 a}\)

Input:

Int[1/(Sec[c + d*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]),x]
 

Output:

(2*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) - ((2*a 
*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((-15*S 
qrt[2]*a^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]* 
Sqrt[a + a*Sec[c + d*x]])])/d + (26*a^2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/( 
d*Sqrt[a + a*Sec[c + d*x]]))/(3*a))/(5*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4310
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + 
b*Csc[e + f*x]])), x] + Simp[1/(2*b*d*n)   Int[(d*Csc[e + f*x])^(n + 1)*((a 
 + b*(2*n + 1)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, 
 b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0] && IntegerQ[2*n]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 
Maple [A] (verified)

Time = 1.18 (sec) , antiderivative size = 139, normalized size of antiderivative = 0.82

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (6 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )+26 \sec \left (d x +c \right ) \tan \left (d x +c \right )+\sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (-15 \sec \left (d x +c \right )-15 \sec \left (d x +c \right )^{2}\right )\right )}{15 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(139\)

Input:

int(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/15/d/a*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(5/2)*(6*sin(d 
*x+c)-2*tan(d*x+c)+26*sec(d*x+c)*tan(d*x+c)+(-2/(cos(d*x+c)+1))^(1/2)*arct 
an(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*(-15*se 
c(d*x+c)-15*sec(d*x+c)^2))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 342, normalized size of antiderivative = 2.02 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\frac {15 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + \frac {4 \, {\left (3 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )^{2} + 13 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{30 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {15 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (3 \, \cos \left (d x + c\right )^{3} - \cos \left (d x + c\right )^{2} + 13 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \] Input:

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[1/30*(15*sqrt(2)*(a*cos(d*x + c) + a)*log(-(cos(d*x + c)^2 + 2*sqrt(2)*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt 
(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/sqrt(a) + 
 4*(3*cos(d*x + c)^3 - cos(d*x + c)^2 + 13*cos(d*x + c))*sqrt((a*cos(d*x + 
 c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) 
+ a*d), 1/15*(15*sqrt(2)*(a*cos(d*x + c) + a)*sqrt(-1/a)*arctan(sqrt(2)*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/sin(d* 
x + c)) + 2*(3*cos(d*x + c)^3 - cos(d*x + c)^2 + 13*cos(d*x + c))*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos( 
d*x + c) + a*d)]
 

Sympy [F]

\[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate(1/sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(1/(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)**(5/2)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 357 vs. \(2 (140) = 280\).

Time = 0.22 (sec) , antiderivative size = 357, normalized size of antiderivative = 2.11 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

1/60*sqrt(2)*(60*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c 
)))*sin(5/2*d*x + 5/2*c) - 5*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2 
*d*x + 5/2*c)))*sin(5/2*d*x + 5/2*c) - 60*cos(5/2*d*x + 5/2*c)*sin(4/5*arc 
tan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 5*cos(5/2*d*x + 5/2*c) 
*sin(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 30*log(cos 
(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arct 
an2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + 2*sin(1/5*arctan2(sin 
(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 1) + 30*log(cos(1/5*arctan2(si 
n(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 + sin(1/5*arctan2(sin(5/2*d*x 
 + 5/2*c), cos(5/2*d*x + 5/2*c)))^2 - 2*sin(1/5*arctan2(sin(5/2*d*x + 5/2* 
c), cos(5/2*d*x + 5/2*c))) + 1) + 6*sin(5/2*d*x + 5/2*c) - 5*sin(3/5*arcta 
n2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 60*sin(1/5*arctan2(sin(5 
/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))/(sqrt(a)*d)
 

Giac [A] (verification not implemented)

Time = 0.67 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.74 \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} {\left (\frac {15 \, \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} + \frac {2 \, {\left ({\left (17 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 20 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {5}{2}}}\right )}}{15 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/15*sqrt(2)*(15*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a)))/sqrt(a) + 2*((17*a^2*tan(1/2*d*x + 1/2*c)^2 + 20*a^2)* 
tan(1/2*d*x + 1/2*c)^2 + 15*a^2)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2 
*c)^2 + a)^(5/2))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {1}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int(1/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)),x)
 

Output:

int(1/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{4}+\sec \left (d x +c \right )^{3}}d x \right )}{a} \] Input:

int(1/sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**4 
+ sec(c + d*x)**3),x))/a