\(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [252]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 134 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {5 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \] Output:

2*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-5/4*arctanh 
(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2 
^(1/2)/a^(3/2)/d-1/2*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 0.34 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.64 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {-2 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+5 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)+5 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-2 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)-10 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x)) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(-2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 5*Sqrt[2]*Arc 
Tan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] + 5* 
Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c 
+ d*x]*Tan[c + d*x] - 2*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])* 
Tan[c + d*x] - 10*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x])*Tan[c + d* 
x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 140, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4303, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4303

\(\displaystyle -\frac {\int \frac {\sqrt {\sec (c+d x)} (a-4 a \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sqrt {\sec (c+d x)} (a-4 a \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a-4 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4511

\(\displaystyle -\frac {5 a \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-4 \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-4 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4288

\(\displaystyle -\frac {5 a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {5 a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {8 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle -\frac {-\frac {10 a \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {8 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {5 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {8 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[Sec[c + d*x]^(5/2)/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

-1/4*((-8*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]] 
)/d + (5*Sqrt[2]*Sqrt[a]*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x]) 
/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/a^2 - (Sec[c + d*x]^(3/2)*Sin[c + 
 d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4303
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-d^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d 
*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))   Int[ 
(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n 
 + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 
0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(221\) vs. \(2(109)=218\).

Time = 2.97 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.66

method result size
default \(-\frac {\cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-5 \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (4 \cos \left (d x +c \right )+4\right ) \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (4 \cos \left (d x +c \right )+4\right ) \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right )}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(222\)

Input:

int(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/4/d/a^2*cos(d*x+c)^3*sec(d*x+c)^(5/2)*(a*(1+sec(d*x+c)))^(1/2)*(-5*2^(1 
/2)*(cos(d*x+c)+1)*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+ 
c)+csc(d*x+c)))+(4*cos(d*x+c)+4)*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(-1 
/(cos(d*x+c)+1))^(1/2))+(4*cos(d*x+c)+4)*arctan(1/2/(-1/(cos(d*x+c)+1))^(1 
/2)*(-cot(d*x+c)+csc(d*x+c)+1))+sin(d*x+c)*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/ 
2))/(cos(d*x+c)+1)^2/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 241 vs. \(2 (109) = 218\).

Time = 0.12 (sec) , antiderivative size = 556, normalized size of antiderivative = 4.15 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos( 
d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqr 
t(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2 
*cos(d*x + c) + 1)) + 4*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log( 
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c 
))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d 
*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) - 4*sqrt((a*cos(d*x + c 
) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^ 
2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(5*sqrt(2)*(cos(d*x + c)^2 + 2*cos( 
d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/c 
os(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 4*(cos(d*x + c)^2 + 2* 
cos(d*x + c) + 1)*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sq 
rt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d 
*x + c))) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*s 
in(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(5/2)/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2122 vs. \(2 (109) = 218\).

Time = 0.27 (sec) , antiderivative size = 2122, normalized size of antiderivative = 15.84 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

1/4*(4*(sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2) 
*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin 
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + 
 sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2) 
*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 
 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt 
(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2) 
*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*sin 
(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) + 
 sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2) 
*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 
 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqrt 
(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 2*(sqrt...
 

Giac [A] (verification not implemented)

Time = 1.28 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.48 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {5 \, \sqrt {2} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{\frac {3}{2}}} - \frac {2 \, \sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2}} + \frac {8 \, \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{\frac {3}{2}}} - \frac {8 \, \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{\frac {3}{2}}}}{8 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

1/8*(5*sqrt(2)*log((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^2)/a^(3/2) - 2*sqrt(2)*sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a)*tan 
(1/2*d*x + 1/2*c)/a^2 + 8*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*t 
an(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/a^(3/2) - 8*log(abs((s 
qrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2 
*sqrt(2) - 3)))/a^(3/2))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((1/cos(c + d*x))^(5/2)/(a + a/cos(c + d*x))^(3/2),x)
 

Output:

int((1/cos(c + d*x))^(5/2)/(a + a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right )}{a^{2}} \] Input:

int(sec(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2)/( 
sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x))/a**2