\(\int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [258]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 214 \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {5 \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}+\frac {115 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {15 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {35 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a^2 d \sqrt {a+a \sec (c+d x)}} \] Output:

-5*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d+115/32*arc 
tanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2 
))*2^(1/2)/a^(5/2)/d-1/4*sec(d*x+c)^(7/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5 
/2)-15/16*sec(d*x+c)^(5/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)+35/16*sec 
(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.84 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.59 \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {70 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+110 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)+32 \sqrt {1-\sec (c+d x)} \sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)-115 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-230 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-115 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec ^2(c+d x) \tan (c+d x)+70 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)+230 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)}{32 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \] Input:

Integrate[Sec[c + d*x]^(9/2)/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

(70*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] + 110*Sqrt[1 - 
Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x] + 32*Sqrt[1 - Sec[c + d*x]]* 
Sec[c + d*x]^(7/2)*Sin[c + d*x] - 115*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + 
 d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] - 230*Sqrt[2]*ArcTan[(Sqrt[2] 
*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - 1 
15*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec 
[c + d*x]^2*Tan[c + d*x] + 70*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + 
d*x])^2*Tan[c + d*x] + 230*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c + d*x])^2 
*Tan[c + d*x])/(32*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 1.38 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.07, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3042, 4303, 27, 3042, 4507, 27, 3042, 4509, 25, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{9/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4303

\(\displaystyle -\frac {\int \frac {5 \sec ^{\frac {5}{2}}(c+d x) (a-2 a \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {5 \int \frac {\sec ^{\frac {5}{2}}(c+d x) (a-2 a \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {5 \left (\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (9 a^2-14 a^2 \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {5 \left (\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (9 a^2-14 a^2 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 \left (\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (9 a^2-14 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4509

\(\displaystyle -\frac {5 \left (\frac {\frac {\int -\frac {\sqrt {\sec (c+d x)} \left (7 a^3-16 a^3 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {5 \left (\frac {-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (7 a^3-16 a^3 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 \left (\frac {-\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (7 a^3-16 a^3 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4511

\(\displaystyle -\frac {5 \left (\frac {-\frac {23 a^3 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-16 a^2 \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {5 \left (\frac {-\frac {23 a^3 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-16 a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4288

\(\displaystyle -\frac {5 \left (\frac {-\frac {23 a^3 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {32 a^2 \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {5 \left (\frac {-\frac {23 a^3 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {32 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle -\frac {5 \left (\frac {-\frac {-\frac {46 a^3 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {32 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {5 \left (\frac {-\frac {\frac {23 \sqrt {2} a^{5/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {32 a^{5/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {14 a^2 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {3 a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

Input:

Int[Sec[c + d*x]^(9/2)/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

-1/4*(Sec[c + d*x]^(7/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) - (5 
*((3*a*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + 
 (-(((-32*a^(5/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]] 
)/d + (23*Sqrt[2]*a^(5/2)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x] 
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/a) - (14*a^2*Sec[c + d*x]^(3/2)* 
Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(4*a^2)))/(8*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4303
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-d^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d 
*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))   Int[ 
(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n 
 + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 
0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4509
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m + n))), 
 x] + Simp[d/(b*(m + n))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 
 1)*Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& GtQ[n, 1]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 3.08 (sec) , antiderivative size = 320, normalized size of antiderivative = 1.50

method result size
default \(\frac {\cos \left (d x +c \right )^{4} \left (\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (-115 \cos \left (d x +c \right )^{3}-230 \cos \left (d x +c \right )^{2}-115 \cos \left (d x +c \right )\right )+\arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (80 \cos \left (d x +c \right )^{3}+160 \cos \left (d x +c \right )^{2}+80 \cos \left (d x +c \right )\right )+\arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (80 \cos \left (d x +c \right )^{3}+160 \cos \left (d x +c \right )^{2}+80 \cos \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (35 \cos \left (d x +c \right )^{2}+55 \cos \left (d x +c \right )+16\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sec \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(320\)

Input:

int(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/32/d/a^3*cos(d*x+c)^4*(2^(1/2)*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1 
/2)*(-cot(d*x+c)+csc(d*x+c)))*(-115*cos(d*x+c)^3-230*cos(d*x+c)^2-115*cos( 
d*x+c))+arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)+1))*( 
80*cos(d*x+c)^3+160*cos(d*x+c)^2+80*cos(d*x+c))+arctan(1/2*(-cot(d*x+c)+cs 
c(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*(80*cos(d*x+c)^3+160*cos(d*x+c)^2+8 
0*cos(d*x+c))+sin(d*x+c)*(35*cos(d*x+c)^2+55*cos(d*x+c)+16)*2^(1/2)*(-2/(c 
os(d*x+c)+1))^(1/2))*sec(d*x+c)^(9/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c) 
^3+3*cos(d*x+c)^2+3*cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 664, normalized size of antiderivative = 3.10 \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

[1/64*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1 
)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3* 
a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 80*(cos(d*x + c)^3 + 3*cos(d*x 
 + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x 
+ c)^2 + 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 
+ cos(d*x + c)^2)) + 4*(35*cos(d*x + c)^2 + 55*cos(d*x + c) + 16)*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*co 
s(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/ 
32*(115*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*s 
qrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sq 
rt(cos(d*x + c))/(a*sin(d*x + c))) + 80*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 
 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c 
))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))* 
sin(d*x + c))) - 2*(35*cos(d*x + c)^2 + 55*cos(d*x + c) + 16)*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d* 
x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(9/2)/(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9048 vs. \(2 (177) = 354\).

Time = 2.29 (sec) , antiderivative size = 9048, normalized size of antiderivative = 42.28 \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

-1/32*(140*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 4 
*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 8*sin(3/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), 
 cos(2*d*x + 2*c))))*cos(11/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) 
 - 16*(75*sin(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 24*sin(7/ 
4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 24*sin(5/4*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c))) - 75*sin(3/4*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))) - 35*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))* 
cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 300*(sin(6*d*x + 6* 
c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 8*sin(3/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c))))*cos(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 96*(sin 
(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2*c) + 8*sin(3/2*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c 
), cos(2*d*x + 2*c))))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)) 
) + 32*(24*sin(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 75*sin(3 
/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 35*sin(1/4*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c))) - 96*(sin(6*d*x + 6*c) + 7*sin(4*d*x + 4*c) + 7*sin(2*d*x + 2* 
c) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(5/4*ar...
 

Giac [F]

\[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {9}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

integrate(sec(d*x + c)^(9/2)/(a*sec(d*x + c) + a)^(5/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((1/cos(c + d*x))^(9/2)/(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int((1/cos(c + d*x))^(9/2)/(a + a/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right )}{a^{3}} \] Input:

int(sec(d*x+c)^(9/2)/(a+a*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**4)/( 
sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1),x))/a**3