\(\int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx\) [262]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 137 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {19 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {9 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \] Output:

19/32*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x 
+c))^(1/2))*2^(1/2)/a^(5/2)/d-1/4*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d 
*x+c))^(5/2)-9/16*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 0.70 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {-76 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )-(9+13 \cos (c+d x)) \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \] Input:

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

(-76*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*C 
os[(c + d*x)/2]^5*Sec[c + d*x]^3*Sin[(c + d*x)/2] - (9 + 13*Cos[c + d*x])* 
Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(16*d*Sqrt[1 - Sec 
[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.04, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4304, 27, 3042, 4500, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)}}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4304

\(\displaystyle -\frac {\int -\frac {\sqrt {\sec (c+d x)} (7 a-2 a \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x)} (7 a-2 a \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (7 a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4500

\(\displaystyle \frac {\frac {19}{4} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {19}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {-\frac {19 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 d}-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {19 \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {9 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

Input:

Int[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

-1/4*(Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) + (( 
19*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*S 
ec[c + d*x]])])/(2*Sqrt[2]*Sqrt[a]*d) - (9*a*Sec[c + d*x]^(3/2)*Sin[c + d* 
x])/(2*d*(a + a*Sec[c + d*x])^(3/2)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4304
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e 
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e 
+ f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ 
[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4500
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] + Simp[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1))   Int[(a + b*Csc[e + 
 f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n} 
, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && LeQ[ 
m, -1]
 
Maple [A] (verified)

Time = 1.86 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.24

method result size
default \(-\frac {\left (\left (-19 \cos \left (d x +c \right )^{2}-38 \cos \left (d x +c \right )-19\right ) \arctan \left (\frac {\sqrt {2}\, \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (13 \cos \left (d x +c \right )+9\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {\sec \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(170\)

Input:

int(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/32/d/a^3*((-19*cos(d*x+c)^2-38*cos(d*x+c)-19)*arctan(1/2*2^(1/2)*(cot(d 
*x+c)-csc(d*x+c))/(-1/(cos(d*x+c)+1))^(1/2))+(13*cos(d*x+c)+9)*sin(d*x+c)* 
(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*2^(1/2)*sec(d*x+c)^(1/2)*(a*(1+sec(d 
*x+c)))^(1/2)/(cos(d*x+c)^3+3*cos(d*x+c)^2+3*cos(d*x+c)+1)/(-1/(cos(d*x+c) 
+1))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 426, normalized size of antiderivative = 3.11 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left (13 \, \cos \left (d x + c\right )^{2} + 9 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (13 \, \cos \left (d x + c\right )^{2} + 9 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

[1/64*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1) 
*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a 
)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(13*cos(d*x + c)^2 + 9*cos(d* 
x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x 
+ c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + 
c) + a^3*d), -1/32*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos( 
d*x + c) + 1)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/c 
os(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(13*cos(d*x + c)^2 + 
 9*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt 
(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*c 
os(d*x + c) + a^3*d)]
 

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Integral(sqrt(sec(c + d*x))/(a*(sec(c + d*x) + 1))**(5/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3049 vs. \(2 (112) = 224\).

Time = 0.51 (sec) , antiderivative size = 3049, normalized size of antiderivative = 22.26 \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

1/32*(19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2* 
d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 
2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 1 
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1 
/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))* 
cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c 
)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d 
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(log 
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
+ 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x 
 + 1/2*c) + 1))*cos(d*x + c)^2 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2* 
d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 
+ sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^2 
 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d* 
x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2* 
sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2 
*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*si 
n(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^ 
2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*...
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((1/cos(c + d*x))^(1/2)/(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int((1/cos(c + d*x))^(1/2)/(a + a/cos(c + d*x))^(5/2), x)
                                                                                    
                                                                                    
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right )}{a^{3}} \] Input:

int(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**3 
+ 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1),x))/a**3