\(\int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx\) [363]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 44 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=\frac {4 a^2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a^2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \] Output:

4*a^2*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2*a^2*sin(d*x+c)/d/cos(d*x+ 
c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.25 (sec) , antiderivative size = 112, normalized size of antiderivative = 2.55 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=-\frac {2 a^2 \csc (c+d x) \left (-3 \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},\cos ^2(c+d x)\right )+\cos (c+d x) \left (6 \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right )+\cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},\cos ^2(c+d x)\right )\right )\right ) \sqrt {\sin ^2(c+d x)}}{3 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2,x]
 

Output:

(-2*a^2*Csc[c + d*x]*(-3*Hypergeometric2F1[-1/4, 1/2, 3/4, Cos[c + d*x]^2] 
 + Cos[c + d*x]*(6*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2] + Cos[ 
c + d*x]*Hypergeometric2F1[1/2, 3/4, 7/4, Cos[c + d*x]^2]))*Sqrt[Sin[c + d 
*x]^2])/(3*d*Sqrt[Cos[c + d*x]])
 

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.93, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {3042, 4752, 3042, 4275, 3042, 4258, 3042, 3120, 4531}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\cos (c+d x)} (a \sec (c+d x)+a)^2 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^2}{\sqrt {\sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4275

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\sec ^2(c+d x) a^2+a^2}{\sqrt {\sec (c+d x)}}dx+2 a^2 \int \sqrt {\sec (c+d x)}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (2 a^2 \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+2 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 a^2+a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )\)

\(\Big \downarrow \) 4531

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}+\frac {4 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}\right )\)

Input:

Int[Sqrt[Cos[c + d*x]]*(a + a*Sec[c + d*x])^2,x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((4*a^2*Sqrt[Cos[c + d*x]]*EllipticF 
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + (2*a^2*Sqrt[Sec[c + d*x]]*Sin[c + 
 d*x])/d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4275
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^2, x_Symbol] :> Simp[2*a*(b/d)   Int[(d*Csc[e + f*x])^(n + 1), x], x] 
 + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, 
 e, f, n}, x]
 

rule 4531
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(184\) vs. \(2(43)=86\).

Time = 1.50 (sec) , antiderivative size = 185, normalized size of antiderivative = 4.20

method result size
default \(-\frac {4 a^{2} \left (-\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(185\)

Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-4*a^2*(-(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*cos(1/2*d*x+ 
1/2*c)*sin(1/2*d*x+1/2*c)^2+(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2 
*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 97, normalized size of antiderivative = 2.20 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=-\frac {2 \, {\left (i \, \sqrt {2} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} a^{2} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - a^{2} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{d \cos \left (d x + c\right )} \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 

Output:

-2*(I*sqrt(2)*a^2*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I 
*sin(d*x + c)) - I*sqrt(2)*a^2*cos(d*x + c)*weierstrassPInverse(-4, 0, cos 
(d*x + c) - I*sin(d*x + c)) - a^2*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos( 
d*x + c))
 

Sympy [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=a^{2} \left (\int 2 \sqrt {\cos {\left (c + d x \right )}} \sec {\left (c + d x \right )}\, dx + \int \sqrt {\cos {\left (c + d x \right )}} \sec ^{2}{\left (c + d x \right )}\, dx + \int \sqrt {\cos {\left (c + d x \right )}}\, dx\right ) \] Input:

integrate(cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**2,x)
 

Output:

a**2*(Integral(2*sqrt(cos(c + d*x))*sec(c + d*x), x) + Integral(sqrt(cos(c 
 + d*x))*sec(c + d*x)**2, x) + Integral(sqrt(cos(c + d*x)), x))
 

Maxima [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 

Output:

integrate((a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\cos \left (d x + c\right )} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((a*sec(d*x + c) + a)^2*sqrt(cos(d*x + c)), x)
 

Mupad [B] (verification not implemented)

Time = 10.46 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.86 \[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=\frac {2\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {4\,a^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(1/2)*(a + a/cos(c + d*x))^2,x)
 

Output:

(2*a^2*ellipticE(c/2 + (d*x)/2, 2))/d + (4*a^2*ellipticF(c/2 + (d*x)/2, 2) 
)/d + (2*a^2*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d* 
cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^2 \, dx=a^{2} \left (\int \sqrt {\cos \left (d x +c \right )}d x +\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right )\right ) \] Input:

int(cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^2,x)
 

Output:

a**2*(int(sqrt(cos(c + d*x)),x) + int(sqrt(cos(c + d*x))*sec(c + d*x)**2,x 
) + 2*int(sqrt(cos(c + d*x))*sec(c + d*x),x))