\(\int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx\) [368]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 121 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {28 a^3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {52 a^3 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {52 a^3 \sqrt {\cos (c+d x)} \sin (c+d x)}{21 d}+\frac {6 a^3 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{5 d}+\frac {2 a^3 \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d} \] Output:

28/5*a^3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+52/21*a^3*InverseJacobiAM 
(1/2*d*x+1/2*c,2^(1/2))/d+52/21*a^3*cos(d*x+c)^(1/2)*sin(d*x+c)/d+6/5*a^3* 
cos(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*a^3*cos(d*x+c)^(5/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 5.56 (sec) , antiderivative size = 245, normalized size of antiderivative = 2.02 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {a^3 (1+\cos (c+d x))^3 \sec ^6\left (\frac {1}{2} (c+d x)\right ) \left (\frac {294 (3 \cos (c-d x-\arctan (\tan (c)))+\cos (c+d x+\arctan (\tan (c)))) \csc (c) \sec (c)}{\sqrt {\sec ^2(c)}}-520 \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+\cos (c+d x) (-1176 \cot (c)+535 \sin (c+d x)+126 \sin (2 (c+d x))+15 \sin (3 (c+d x)))-588 \cos (c) \csc (d x+\arctan (\tan (c))) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{1680 d \sqrt {\cos (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3,x]
 

Output:

(a^3*(1 + Cos[c + d*x])^3*Sec[(c + d*x)/2]^6*((294*(3*Cos[c - d*x - ArcTan 
[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 
 520*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hyperge 
ometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTa 
n[Cot[c]]]*Sin[c] + Cos[c + d*x]*(-1176*Cot[c] + 535*Sin[c + d*x] + 126*Si 
n[2*(c + d*x)] + 15*Sin[3*(c + d*x)]) - 588*Cos[c]*Csc[d*x + ArcTan[Tan[c] 
]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqr 
t[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(1680*d*Sqrt[Cos[c + d*x]] 
)
 

Rubi [A] (verified)

Time = 0.57 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.50, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4752, 3042, 4278, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^3 \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^3}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4278

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \left (\frac {a^3}{\sqrt {\sec (c+d x)}}+\frac {3 a^3}{\sec ^{\frac {3}{2}}(c+d x)}+\frac {3 a^3}{\sec ^{\frac {5}{2}}(c+d x)}+\frac {a^3}{\sec ^{\frac {7}{2}}(c+d x)}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {6 a^3 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a^3 \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {52 a^3 \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}}+\frac {52 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {28 a^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )\)

Input:

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3,x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((28*a^3*Sqrt[Cos[c + d*x]]*Elliptic 
E[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (52*a^3*Sqrt[Cos[c + d*x]]*E 
llipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a^3*Sin[c + d*x]) 
/(7*d*Sec[c + d*x]^(5/2)) + (6*a^3*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) 
+ (52*a^3*Sin[c + d*x])/(21*d*Sqrt[Sec[c + d*x]]))
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4278
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Int[ExpandTrig[(a + b*csc[e + f*x])^m*(d*csc[e + f 
*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && I 
GtQ[m, 0] && RationalQ[n]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(271\) vs. \(2(108)=216\).

Time = 17.17 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.25

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{3} \left (120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-432 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+602 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-208 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+65 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-147 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(272\)

Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)
 

Output:

-4/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^3*(120*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8-432*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x 
+1/2*c)+602*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-208*cos(1/2*d*x+1/2*c) 
*sin(1/2*d*x+1/2*c)^2+65*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-147*(sin(1/2*d*x+1/2*c) 
^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1) 
^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1 
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.34 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=-\frac {2 \, {\left (65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 65 i \, \sqrt {2} a^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 147 i \, \sqrt {2} a^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (15 \, a^{3} \cos \left (d x + c\right )^{2} + 63 \, a^{3} \cos \left (d x + c\right ) + 130 \, a^{3}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{105 \, d} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")
 

Output:

-2/105*(65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 65*I*sqrt(2)*a^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*si 
n(d*x + c)) - 147*I*sqrt(2)*a^3*weierstrassZeta(-4, 0, weierstrassPInverse 
(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 147*I*sqrt(2)*a^3*weierstrassZet 
a(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (15* 
a^3*cos(d*x + c)^2 + 63*a^3*cos(d*x + c) + 130*a^3)*sqrt(cos(d*x + c))*sin 
(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")
 

Output:

integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {7}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^3,x, algorithm="giac")
 

Output:

integrate((a*sec(d*x + c) + a)^3*cos(d*x + c)^(7/2), x)
 

Mupad [B] (verification not implemented)

Time = 10.79 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.18 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=\frac {2\,\left (a^3\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+a^3\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )\right )}{d}-\frac {6\,a^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}}-\frac {2\,a^3\,{\cos \left (c+d\,x\right )}^{9/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {9}{4};\ \frac {13}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{9\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^3,x)
 

Output:

(2*(a^3*ellipticE(c/2 + (d*x)/2, 2) + a^3*ellipticF(c/2 + (d*x)/2, 2) + a^ 
3*cos(c + d*x)^(1/2)*sin(c + d*x)))/d - (6*a^3*cos(c + d*x)^(7/2)*sin(c + 
d*x)*hypergeom([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1 
/2)) - (2*a^3*cos(c + d*x)^(9/2)*sin(c + d*x)*hypergeom([1/2, 9/4], 13/4, 
cos(c + d*x)^2))/(9*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3 \, dx=a^{3} \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{3}d x +3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2}d x \right )+3 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )d x \right )+\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) \] Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^3,x)
 

Output:

a**3*(int(sqrt(cos(c + d*x))*cos(c + d*x)**3*sec(c + d*x)**3,x) + 3*int(sq 
rt(cos(c + d*x))*cos(c + d*x)**3*sec(c + d*x)**2,x) + 3*int(sqrt(cos(c + d 
*x))*cos(c + d*x)**3*sec(c + d*x),x) + int(sqrt(cos(c + d*x))*cos(c + d*x) 
**3,x))