\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx\) [375]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 100 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=-\frac {3 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {5 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {5 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {\sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

-3*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+5/3*InverseJacobiAM(1/2*d*x+1 
/2*c,2^(1/2))/a/d+5/3*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d-cos(d*x+c)^(1/2)*sin 
(d*x+c)/d/(a+a*sec(d*x+c))
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.32 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.92 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-\frac {2 i \sqrt {2} e^{-i (c+d x)} \left (9 \left (1+e^{2 i (c+d x)}\right )+9 \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+5 e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right ) \sec (c+d x)}{d \left (-1+e^{2 i c}\right ) \sqrt {e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}+\frac {12 \cot (c)+6 \csc (c)+4 \cos (d x) \sin (c)+6 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {d x}{2}\right )+4 \cos (c) \sin (d x)}{d \sqrt {\cos (c+d x)}}\right )}{3 a (1+\sec (c+d x))} \] Input:

Integrate[Cos[c + d*x]^(3/2)/(a + a*Sec[c + d*x]),x]
 

Output:

(Cos[(c + d*x)/2]^2*(((-2*I)*Sqrt[2]*(9*(1 + E^((2*I)*(c + d*x))) + 9*(-1 
+ E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[-1/4, 1/2, 
3/4, -E^((2*I)*(c + d*x))] + 5*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[1 + 
 E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x) 
)])*Sec[c + d*x])/(d*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt[(1 + E^((2*I) 
*(c + d*x)))/E^(I*(c + d*x))]) + (12*Cot[c] + 6*Csc[c] + 4*Cos[d*x]*Sin[c] 
 + 6*Sec[c/2]*Sec[(c + d*x)/2]*Sin[(d*x)/2] + 4*Cos[c]*Sin[d*x])/(d*Sqrt[C 
os[c + d*x]])))/(3*a*(1 + Sec[c + d*x]))
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.65, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.609, Rules used = {3042, 4752, 3042, 4306, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (\sec (c+d x) a+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx\)

\(\Big \downarrow \) 4306

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (-\frac {\int -\frac {5 a-3 a \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {5 a-3 a \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {5 a-3 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 4274

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx-3 a \int \frac {1}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 4256

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 4258

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5 a \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )-\frac {6 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {\sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\right )\)

Input:

Int[Cos[c + d*x]^(3/2)/(a + a*Sec[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-(Sin[c + d*x]/(d*Sqrt[Sec[c + d*x] 
]*(a + a*Sec[c + d*x]))) + ((-6*a*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2 
, 2]*Sqrt[Sec[c + d*x]])/d + 5*a*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x 
)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x 
]])))/(2*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4306
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + 
f*x]))), x] - Simp[1/a^2   Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc[e + 
f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0 
]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(214\) vs. \(2(95)=190\).

Time = 3.61 (sec) , antiderivative size = 215, normalized size of antiderivative = 2.15

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (5 \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+18 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-7 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(215\)

Input:

int(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+ 
1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(5*El 
lipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
))-8*sin(1/2*d*x+1/2*c)^6+18*sin(1/2*d*x+1/2*c)^4-7*sin(1/2*d*x+1/2*c)^2)/ 
a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/ 
sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.98 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {2 \, {\left (2 \, \cos \left (d x + c\right ) + 5\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 

Output:

1/6*(2*(2*cos(d*x + c) + 5)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(I*sqrt(2) 
*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin 
(d*x + c)) - 5*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassPInverse(- 
4, 0, cos(d*x + c) - I*sin(d*x + c)) - 9*(I*sqrt(2)*cos(d*x + c) + I*sqrt( 
2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin 
(d*x + c))) - 9*(-I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 
0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d* 
x + c) + a*d)
 

Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \] Input:

integrate(cos(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)
 

Output:

Integral(cos(c + d*x)**(3/2)/(sec(c + d*x) + 1), x)/a
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int { \frac {\cos \left (d x + c\right )^{\frac {3}{2}}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 

Output:

integrate(cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x)),x)
 

Output:

int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x)), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x}{a} \] Input:

int(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x)
 

Output:

int((sqrt(cos(c + d*x))*cos(c + d*x))/(sec(c + d*x) + 1),x)/a