\(\int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\) [411]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 180 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {11 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{8 d}+\frac {a^2 \sin (c+d x)}{3 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{12 d \cos ^{\frac {5}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {11 a^2 \sin (c+d x)}{8 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \] Output:

11/8*a^(3/2)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c) 
^(1/2)*sec(d*x+c)^(1/2)/d+1/3*a^2*sin(d*x+c)/d/cos(d*x+c)^(7/2)/(a+a*sec(d 
*x+c))^(1/2)+11/12*a^2*sin(d*x+c)/d/cos(d*x+c)^(5/2)/(a+a*sec(d*x+c))^(1/2 
)+11/8*a^2*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.42 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.65 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\frac {a^2 \left (\left (8+22 \cos (c+d x)+33 \cos ^2(c+d x)\right ) \sqrt {1-\sec (c+d x)}+\frac {33 \arcsin \left (\sqrt {1-\sec (c+d x)}\right )}{\sec ^{\frac {5}{2}}(c+d x)}\right ) \sin (c+d x)}{24 d \cos ^{\frac {7}{2}}(c+d x) \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]
 

Output:

(a^2*((8 + 22*Cos[c + d*x] + 33*Cos[c + d*x]^2)*Sqrt[1 - Sec[c + d*x]] + ( 
33*ArcSin[Sqrt[1 - Sec[c + d*x]]])/Sec[c + d*x]^(5/2))*Sin[c + d*x])/(24*d 
*Cos[c + d*x]^(7/2)*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.01, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3042, 4752, 3042, 4301, 27, 3042, 4290, 3042, 4290, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sec ^{\frac {5}{2}}(c+d x) (\sec (c+d x) a+a)^{3/2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}dx\)

\(\Big \downarrow \) 4301

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} a \int \frac {11}{2} \sec ^{\frac {5}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \int \sec ^{\frac {5}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \int \csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4290

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \left (\frac {3}{4} \int \sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \left (\frac {3}{4} \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4290

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {11}{6} a \left (\frac {3}{4} \left (\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {a^2 \sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {11}{6} a \left (\frac {3}{4} \left (\frac {\sqrt {a} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\right )\)

Input:

Int[(a + a*Sec[c + d*x])^(3/2)/Cos[c + d*x]^(5/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((a^2*Sec[c + d*x]^(7/2)*Sin[c + d*x 
])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (11*a*((a*Sec[c + d*x]^(5/2)*Sin[c + d 
*x])/(2*d*Sqrt[a + a*Sec[c + d*x]]) + (3*((Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c 
+ d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (a*Sec[c + d*x]^(3/2)*Sin[c + d*x]) 
/(d*Sqrt[a + a*Sec[c + d*x]])))/4))/6)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4290
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[-2*b*d*Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/( 
f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2*n - 
1)))   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; Fre 
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
 

rule 4301
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-b^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 
2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1)   Int[(a + 
 b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n 
 - 4)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^ 
2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 3.73 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.01

method result size
default \(\frac {a \left (-33 \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-33 \cos \left (d x +c \right )^{3} \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right ) \left (33 \cos \left (d x +c \right )^{2}+22 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{48 d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right )^{\frac {5}{2}}}\) \(182\)

Input:

int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/48/d*a*(-33*cos(d*x+c)^3*arctan(1/2/(-1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+ 
c)+csc(d*x+c)+1))-33*cos(d*x+c)^3*arctan(1/2*(-cot(d*x+c)+csc(d*x+c)-1)/(- 
1/(cos(d*x+c)+1))^(1/2))+sin(d*x+c)*(33*cos(d*x+c)^2+22*cos(d*x+c)+8)*2^(1 
/2)*(-2/(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/(-1 
/(cos(d*x+c)+1))^(1/2)/cos(d*x+c)^(5/2)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 391, normalized size of antiderivative = 2.17 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\left [\frac {4 \, {\left (33 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 8 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 33 \, {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{96 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {2 \, {\left (33 \, a \cos \left (d x + c\right )^{2} + 22 \, a \cos \left (d x + c\right ) + 8 \, a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 33 \, {\left (a \cos \left (d x + c\right )^{4} + a \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{48 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="fricas")
 

Output:

[1/96*(4*(33*a*cos(d*x + c)^2 + 22*a*cos(d*x + c) + 8*a)*sqrt((a*cos(d*x + 
 c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + 33*(a*cos(d*x + c 
)^4 + a*cos(d*x + c)^3)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin( 
d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/( 
d*cos(d*x + c)^4 + d*cos(d*x + c)^3), 1/48*(2*(33*a*cos(d*x + c)^2 + 22*a* 
cos(d*x + c) + 8*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + 
 c))*sin(d*x + c) + 33*(a*cos(d*x + c)^4 + a*cos(d*x + c)^3)*sqrt(-a)*arct 
an(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*s 
in(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^4 
+ d*cos(d*x + c)^3)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(3/2)/cos(d*x+c)**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2361 vs. \(2 (150) = 300\).

Time = 0.28 (sec) , antiderivative size = 2361, normalized size of antiderivative = 13.12 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="maxima")
 

Output:

-1/96*(132*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 3* 
sqrt(2)*a*sin(2*d*x + 2*c))*cos(11/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c))) + 44*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) + 
3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(9/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c))) + 216*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c) 
+ 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c))) - 216*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4*c 
) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(5/4*arctan2(sin(2*d*x + 2*c), cos(2* 
d*x + 2*c))) - 44*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 4* 
c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c))) - 132*(sqrt(2)*a*sin(6*d*x + 6*c) + 3*sqrt(2)*a*sin(4*d*x + 
4*c) + 3*sqrt(2)*a*sin(2*d*x + 2*c))*cos(1/4*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c))) - 33*(a*cos(6*d*x + 6*c)^2 + 9*a*cos(4*d*x + 4*c)^2 + 9*a* 
cos(2*d*x + 2*c)^2 + a*sin(6*d*x + 6*c)^2 + 9*a*sin(4*d*x + 4*c)^2 + 18*a* 
sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 9*a*sin(2*d*x + 2*c)^2 + 2*(3*a*cos(4* 
d*x + 4*c) + 3*a*cos(2*d*x + 2*c) + a)*cos(6*d*x + 6*c) + 6*(3*a*cos(2*d*x 
 + 2*c) + a)*cos(4*d*x + 4*c) + 6*a*cos(2*d*x + 2*c) + 6*(a*sin(4*d*x + 4* 
c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c) + a)*log(2*cos(1/4*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), co 
s(2*d*x + 2*c)))^2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 472 vs. \(2 (150) = 300\).

Time = 0.51 (sec) , antiderivative size = 472, normalized size of antiderivative = 2.62 \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x, algorithm="giac")
 

Output:

1/48*(33*a^(3/2)*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))*sgn(cos(d*x + c)) - 33*a^(3/2)* 
log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a) 
)^2 + a*(2*sqrt(2) - 3)))*sgn(cos(d*x + c)) + 4*(33*sqrt(2)*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^10*a^(5/2)*sgn(cos(d 
*x + c)) - 303*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
+ 1/2*c)^2 + a))^8*a^(7/2)*sgn(cos(d*x + c)) + 2394*sqrt(2)*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*a^(9/2)*sgn(cos(d* 
x + c)) - 1806*sqrt(2)*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
+ 1/2*c)^2 + a))^4*a^(11/2)*sgn(cos(d*x + c)) + 309*sqrt(2)*(sqrt(a)*tan(1 
/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a^(13/2)*sgn(cos(d 
*x + c)) - 19*sqrt(2)*a^(15/2)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2*d*x + 
1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 
1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{5/2}} \,d x \] Input:

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2),x)
                                                                                    
                                                                                    
 

Output:

int((a + a/cos(c + d*x))^(3/2)/cos(c + d*x)^(5/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2}}{\cos ^{\frac {5}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{3}}d x +\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \right ) \] Input:

int((a+a*sec(d*x+c))^(3/2)/cos(d*x+c)^(5/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*sec(c + d*x))/co 
s(c + d*x)**3,x) + int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/cos(c + 
 d*x)**3,x))