\(\int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\) [413]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 156 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {64 a^3 \sin (c+d x)}{21 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{21 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d}+\frac {2 \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \sin (c+d x)}{7 d} \] Output:

64/21*a^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+16/21*a^2*c 
os(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+2/7*a*cos(d*x+c)^(3/2) 
*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*cos(d*x+c)^(5/2)*(a+a*sec(d*x+c)) 
^(5/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 5.52 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.54 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {a^2 \sqrt {\cos (c+d x)} \sqrt {a (1+\sec (c+d x))} (392 \sin (c+d x)+98 \sin (2 (c+d x))+3 (8 \sin (3 (c+d x))+\sin (4 (c+d x))))}{84 d (1+\cos (c+d x))} \] Input:

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

(a^2*Sqrt[Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*(392*Sin[c + d*x] + 98* 
Sin[2*(c + d*x)] + 3*(8*Sin[3*(c + d*x)] + Sin[4*(c + d*x)])))/(84*d*(1 + 
Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.19, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4752, 3042, 4299, 3042, 4296, 3042, 4296, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{5/2}}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4299

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \int \frac {(\sec (c+d x) a+a)^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4296

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \left (\frac {8}{5} a \int \frac {(\sec (c+d x) a+a)^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \left (\frac {8}{5} a \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4296

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \left (\frac {8}{5} a \left (\frac {4}{3} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4291

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {5}{7} \left (\frac {8}{5} a \left (\frac {8 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+\frac {2 \sin (c+d x) (a \sec (c+d x)+a)^{5/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

Input:

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*(a + a*Sec[c + d*x])^(5/2)*Sin[c 
 + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (5*((2*a*(a + a*Sec[c + d*x])^(3/2)*Si 
n[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (8*a*((8*a^2*Sqrt[Sec[c + d*x]]*Sin 
[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*Sec[c + d*x]]* 
Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/5))/7)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4296
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-a)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1) 
*((d*Csc[e + f*x])^n/(f*m)), x] + Simp[b*((2*m - 1)/(d*m))   Int[(a + b*Csc 
[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f 
, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2] && Integer 
Q[2*m]
 

rule 4299
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc 
[e + f*x])^n/(f*(m + 1))), x] + Simp[a*(m/(b*d*(m + 1)))   Int[(a + b*Csc[e 
 + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, 
 x] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -2^(-1)]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 1.50 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.48

\[\frac {2 a^{2} \sin \left (d x +c \right ) \left (3 \cos \left (d x +c \right )^{3}+12 \cos \left (d x +c \right )^{2}+23 \cos \left (d x +c \right )+46\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{21 d \left (\cos \left (d x +c \right )+1\right )}\]

Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(5/2),x)
 

Output:

2/21/d*a^2*sin(d*x+c)*(3*cos(d*x+c)^3+12*cos(d*x+c)^2+23*cos(d*x+c)+46)*co 
s(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.59 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {2 \, {\left (3 \, a^{2} \cos \left (d x + c\right )^{3} + 12 \, a^{2} \cos \left (d x + c\right )^{2} + 23 \, a^{2} \cos \left (d x + c\right ) + 46 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 

Output:

2/21*(3*a^2*cos(d*x + c)^3 + 12*a^2*cos(d*x + c)^2 + 23*a^2*cos(d*x + c) + 
 46*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d* 
x + c)/(d*cos(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 323 vs. \(2 (132) = 264\).

Time = 0.20 (sec) , antiderivative size = 323, normalized size of antiderivative = 2.07 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 

Output:

1/168*sqrt(2)*(315*a^2*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
 7/2*c)))*sin(7/2*d*x + 7/2*c) + 77*a^2*cos(4/7*arctan2(sin(7/2*d*x + 7/2* 
c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 21*a^2*cos(2/7*arctan2(s 
in(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 315*a^2 
*cos(7/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c))) - 77*a^2*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c 
), cos(7/2*d*x + 7/2*c))) - 21*a^2*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(si 
n(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 6*a^2*sin(7/2*d*x + 7/2*c) + 
21*a^2*sin(5/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 77*a 
^2*sin(3/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 315*a^2* 
sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*sqrt(a)/d
 

Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.83 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\frac {8 \, {\left (21 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (35 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 4 \, {\left (2 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 7 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{21 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {7}{2}} d} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

8/21*(21*sqrt(2)*a^6*sgn(cos(d*x + c)) + (35*sqrt(2)*a^6*sgn(cos(d*x + c)) 
 + 4*(2*sqrt(2)*a^6*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)^2 + 7*sqrt(2)*a 
^6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan( 
1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 + a)^(7/2)*d)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\int {\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \] Input:

int(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx=\sqrt {a}\, a^{2} \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2}d x +2 \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )d x \right )+\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) \] Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(5/2),x)
 

Output:

sqrt(a)*a**2*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)** 
3*sec(c + d*x)**2,x) + 2*int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos 
(c + d*x)**3*sec(c + d*x),x) + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x 
))*cos(c + d*x)**3,x))