\(\int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [421]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 151 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{\sqrt {a} d}-\frac {2 \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \] Output:

2^(1/2)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d 
*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^(1/2)/d-2/3*sin(d*x+c)/d 
/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+2/3*cos(d*x+c)^(1/2)*sin(d*x+c)/d 
/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.77 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {\cos (c+d x)} \left (2 (1-\sec (c+d x))^{3/2}-3 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec ^{\frac {3}{2}}(c+d x)\right ) \sin (c+d x)}{3 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Cos[c + d*x]^(3/2)/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(Sqrt[Cos[c + d*x]]*(2*(1 - Sec[c + d*x])^(3/2) - 3*Sqrt[2]*ArcTan[(Sqrt[2 
]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^(3/2))*Sin[c + 
d*x])/(3*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.81 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.06, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4752, 3042, 4310, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {\sec (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx\)

\(\Big \downarrow \) 4310

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a-2 a \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a-2 a \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {6 a \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {3 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}\right )\)

Input:

Int[Cos[c + d*x]^(3/2)/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + 
d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((-3*Sqrt[2]*Sqrt[a]*ArcTanh[(Sqrt[a]*Sq 
rt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + (2 
*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a))
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4310
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + 
b*Csc[e + f*x]])), x] + Simp[1/(2*b*d*n)   Int[(d*Csc[e + f*x])^(n + 1)*((a 
 + b*(2*n + 1)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, 
 b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0] && IntegerQ[2*n]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 1.52 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.77

method result size
default \(\frac {\left (\left (2 \cos \left (d x +c \right )-2\right ) \sin \left (d x +c \right )+\left (3 \cos \left (d x +c \right )+3\right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{3 d a \left (\cos \left (d x +c \right )+1\right )}\) \(117\)

Input:

int(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/3/d/a*((2*cos(d*x+c)-2)*sin(d*x+c)+(3*cos(d*x+c)+3)*(-2/(cos(d*x+c)+1))^ 
(1/2)*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c) 
)))*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 309, normalized size of antiderivative = 2.05 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 1\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \frac {3 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {3 \, \sqrt {2} {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (\cos \left (d x + c\right ) + 1\right )}}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 1\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{3 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
                                                                                    
                                                                                    
 

Output:

[1/6*(4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 1)*sqrt(co 
s(d*x + c))*sin(d*x + c) + 3*sqrt(2)*(a*cos(d*x + c) + a)*log(-(cos(d*x + 
c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c) 
)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + 
 c) + 1))/sqrt(a))/(a*d*cos(d*x + c) + a*d), -1/3*(3*sqrt(2)*(a*cos(d*x + 
c) + a)*sqrt(-1/a)*arctan(1/2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
c))*sqrt(-1/a)*sqrt(cos(d*x + c))*sin(d*x + c)/(cos(d*x + c) + 1)) - 2*sqr 
t((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 1)*sqrt(cos(d*x + c)) 
*sin(d*x + c))/(a*d*cos(d*x + c) + a*d)]
 

Sympy [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cos ^{\frac {3}{2}}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(cos(c + d*x)**(3/2)/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (124) = 248\).

Time = 0.20 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.87 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {3 \, \sqrt {2} \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 \, \sqrt {2} \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) - 3 \, \sqrt {2} \log \left (\cos \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 1\right ) + 3 \, \sqrt {2} \log \left (\cos \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 1\right ) - 2 \, \sqrt {2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sqrt {2} \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )}{6 \, \sqrt {a} d} \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

-1/6*(3*sqrt(2)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
))*sin(3/2*d*x + 3/2*c) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2(s 
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2 
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 3 
/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
cos(3/2*d*x + 3/2*c))) + 1) - 2*sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)*s 
in(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))/(sqrt(a)*d)
 

Giac [A] (verification not implemented)

Time = 171.79 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.58 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} {\left (\frac {4 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3}}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}} + \frac {3 \, \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}}\right )}}{3 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

-1/3*sqrt(2)*(4*a*tan(1/2*d*x + 1/2*c)^3/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3 
/2) + 3*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 1/2*c 
)^2 + a)))/sqrt(a))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(cos(c + d*x)^(3/2)/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x))/(sec 
(c + d*x) + 1),x))/a