\(\int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx\) [431]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 117 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \] Output:

1/4*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d*x+c 
))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/a^(3/2)/d+1/2*sin(d*x+ 
c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2)
                                                                                    
                                                                                    
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(248\) vs. \(2(117)=234\).

Time = 0.61 (sec) , antiderivative size = 248, normalized size of antiderivative = 2.12 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cos (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \left (-\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )-\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \cos (c+d x)+2 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\cos (c+d x))+2 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\cos (c+d x))+\sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+\cos (2 (c+d x)) \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)\right ) \sin (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)),x]
 

Output:

(Sqrt[Cos[c + d*x]]*Sec[c + d*x]^(5/2)*(-(Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec 
[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]) - Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c 
+ d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[c + d*x] + 2*ArcSin[Sqrt[1 - Sec[c + 
d*x]]]*(1 + Cos[c + d*x]) + 2*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Cos[c + d*x] 
) + Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + Cos[2*(c + d*x)]*Sqrt[1 - 
Sec[c + d*x]]*Sec[c + d*x]^(3/2))*Sin[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x] 
]*(a*(1 + Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3042, 4752, 3042, 4297, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4752

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(\sec (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4297

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{4 a}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

\(\Big \downarrow \) 4295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {\int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 a d}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\right )\)

Input:

Int[1/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]] 
*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]/(2*Sqrt[2]*a^(3/2)*d) + 
 (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)))
 

Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4297
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[b*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Cs 
c[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[d*((m + 1)/(b*(2*m + 1))) 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ 
[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, 
-2^(-1)] && IntegerQ[2*m]
 

rule 4752
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a 
+ b*x])^m*(c*Sin[a + b*x])^m   Int[ActivateTrig[u]/(c*Csc[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 2.12 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.05

method result size
default \(-\frac {\left (-\sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right )+\arctan \left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \left (\cos \left (d x +c \right )+1\right )\right ) \sqrt {2}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(123\)

Input:

int(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/4/d/a^2*(-(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+arctan(1/2*2^(1/2)/(-1/( 
cos(d*x+c)+1))^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*(cos(d*x+c)+1))*2^(1/2)*(a* 
(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/(cos(d*x+c)+1)^2/(-1/(cos(d*x+c)+1) 
)^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 346, normalized size of antiderivative = 2.96 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {\sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {\sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right ) + a\right )}}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d* 
x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt( 
cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*c 
os(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x 
 + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d) 
, -1/4*(sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arctan(1/2* 
sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c) 
)*sin(d*x + c)/(a*cos(d*x + c) + a)) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*co 
s(d*x + c) + a^2*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(1/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 15721 vs. \(2 (94) = 188\).

Time = 0.71 (sec) , antiderivative size = 15721, normalized size of antiderivative = 134.37 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

1/4*(32*(cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) + cos(2*d*x + 2*c)*sin(3/2* 
d*x + 3/2*c) + cos(d*x + c)*sin(3/2*d*x + 3/2*c) + cos(3/2*d*x + 3/2*c)*si 
n(d*x + c))*cos(3*d*x + 3*c)^2 + 96*(cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c) 
 + 3*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x + c) + 1)*sin(3/2* 
d*x + 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3*cos(2*d*x + 2*c)* 
sin(3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + c))*cos(4/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 96*(cos(3/2*d*x + 3/2*c 
)*sin(3*d*x + 3*c) + 3*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x 
+ c) + 1)*sin(3/2*d*x + 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3 
*cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + 
c))*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 32*(c 
os(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) + cos(2*d*x + 2*c)*sin(3/2*d*x + 3/2* 
c) + cos(d*x + c)*sin(3/2*d*x + 3/2*c) + cos(3/2*d*x + 3/2*c)*sin(d*x + c) 
)*sin(3*d*x + 3*c)^2 + 32*(6*cos(d*x + c) + 1)*cos(2*d*x + 2*c)*sin(3/2*d* 
x + 3/2*c) + 96*cos(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 96*sin(2*d*x + 2 
*c)^2*sin(3/2*d*x + 3/2*c) + 96*(cos(3/2*d*x + 3/2*c)*sin(3*d*x + 3*c) + 3 
*cos(3/2*d*x + 3/2*c)*sin(2*d*x + 2*c) - (3*cos(d*x + c) + 1)*sin(3/2*d*x 
+ 3/2*c) - cos(3*d*x + 3*c)*sin(3/2*d*x + 3/2*c) - 3*cos(2*d*x + 2*c)*sin( 
3/2*d*x + 3/2*c) + 3*cos(3/2*d*x + 3/2*c)*sin(d*x + c))*sin(4/3*arctan2(si 
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 96*(cos(3/2*d*x + 3/2*c)...
 

Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\frac {\sqrt {2} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{a^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \] Input:

integrate(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

-1/4*(sqrt(2)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(1/2*d*x + 
 1/2*c)^2 + a)))/(a^(3/2)*sgn(cos(d*x + c))) - sqrt(2)*sqrt(a*tan(1/2*d*x 
+ 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/(a^2*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)),x)
 

Output:

int(1/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right )}{a^{2}} \] Input:

int(1/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x)))/(cos(c + d*x)**2* 
sec(c + d*x)**2 + 2*cos(c + d*x)**2*sec(c + d*x) + cos(c + d*x)**2),x))/a* 
*2