\(\int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx\) [2]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 19, antiderivative size = 119 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=-\frac {a \cos (c+d x)}{d}+\frac {3 a \cos ^2(c+d x)}{2 d}+\frac {a \cos ^3(c+d x)}{d}-\frac {3 a \cos ^4(c+d x)}{4 d}-\frac {3 a \cos ^5(c+d x)}{5 d}+\frac {a \cos ^6(c+d x)}{6 d}+\frac {a \cos ^7(c+d x)}{7 d}-\frac {a \log (\cos (c+d x))}{d} \] Output:

-a*cos(d*x+c)/d+3/2*a*cos(d*x+c)^2/d+a*cos(d*x+c)^3/d-3/4*a*cos(d*x+c)^4/d 
-3/5*a*cos(d*x+c)^5/d+1/6*a*cos(d*x+c)^6/d+1/7*a*cos(d*x+c)^7/d-a*ln(cos(d 
*x+c))/d
 

Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.95 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=-\frac {35 a \cos (c+d x)}{64 d}+\frac {7 a \cos (3 (c+d x))}{64 d}-\frac {7 a \cos (5 (c+d x))}{320 d}+\frac {a \cos (7 (c+d x))}{448 d}-\frac {a \left (-\frac {3}{2} \cos ^2(c+d x)+\frac {3}{4} \cos ^4(c+d x)-\frac {1}{6} \cos ^6(c+d x)+\log (\cos (c+d x))\right )}{d} \] Input:

Integrate[(a + a*Sec[c + d*x])*Sin[c + d*x]^7,x]
 

Output:

(-35*a*Cos[c + d*x])/(64*d) + (7*a*Cos[3*(c + d*x)])/(64*d) - (7*a*Cos[5*( 
c + d*x)])/(320*d) + (a*Cos[7*(c + d*x)])/(448*d) - (a*((-3*Cos[c + d*x]^2 
)/2 + (3*Cos[c + d*x]^4)/4 - Cos[c + d*x]^6/6 + Log[Cos[c + d*x]]))/d
 

Rubi [A] (verified)

Time = 0.36 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.526, Rules used = {3042, 4360, 25, 25, 3042, 25, 3315, 27, 99, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sin ^7(c+d x) (a \sec (c+d x)+a) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos \left (c+d x-\frac {\pi }{2}\right )^7 \left (a-a \csc \left (c+d x-\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4360

\(\displaystyle \int -\left (\sin ^6(c+d x) \tan (c+d x) (a (-\cos (c+d x))-a)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int -\left ((\cos (c+d x) a+a) \sin ^6(c+d x) \tan (c+d x)\right )dx\)

\(\Big \downarrow \) 25

\(\displaystyle \int \sin ^6(c+d x) \tan (c+d x) (a \cos (c+d x)+a)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\cos \left (c+d x+\frac {\pi }{2}\right )^7 \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\cos \left (\frac {1}{2} (2 c+\pi )+d x\right )^7 \left (\sin \left (\frac {1}{2} (2 c+\pi )+d x\right ) a+a\right )}{\sin \left (\frac {1}{2} (2 c+\pi )+d x\right )}dx\)

\(\Big \downarrow \) 3315

\(\displaystyle -\frac {\int (a-a \cos (c+d x))^3 (\cos (c+d x) a+a)^4 \sec (c+d x)d(a \cos (c+d x))}{a^7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {(a-a \cos (c+d x))^3 (\cos (c+d x) a+a)^4 \sec (c+d x)}{a}d(a \cos (c+d x))}{a^6 d}\)

\(\Big \downarrow \) 99

\(\displaystyle -\frac {\int \left (-\cos ^6(c+d x) a^6-\cos ^5(c+d x) a^6+3 \cos ^4(c+d x) a^6+3 \cos ^3(c+d x) a^6-3 \cos ^2(c+d x) a^6-3 \cos (c+d x) a^6+\sec (c+d x) a^6+a^6\right )d(a \cos (c+d x))}{a^6 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {-\frac {1}{7} a^7 \cos ^7(c+d x)-\frac {1}{6} a^7 \cos ^6(c+d x)+\frac {3}{5} a^7 \cos ^5(c+d x)+\frac {3}{4} a^7 \cos ^4(c+d x)-a^7 \cos ^3(c+d x)-\frac {3}{2} a^7 \cos ^2(c+d x)+a^7 \cos (c+d x)+a^7 \log (a \cos (c+d x))}{a^6 d}\)

Input:

Int[(a + a*Sec[c + d*x])*Sin[c + d*x]^7,x]
 

Output:

-((a^7*Cos[c + d*x] - (3*a^7*Cos[c + d*x]^2)/2 - a^7*Cos[c + d*x]^3 + (3*a 
^7*Cos[c + d*x]^4)/4 + (3*a^7*Cos[c + d*x]^5)/5 - (a^7*Cos[c + d*x]^6)/6 - 
 (a^7*Cos[c + d*x]^7)/7 + a^7*Log[a*Cos[c + d*x]])/(a^6*d))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 99
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_) 
)^(p_), x_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], 
 x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ[p] | 
| (GtQ[m, 0] && GeQ[n, -1]))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3315
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p* 
f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x)^n, 
 x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && Intege 
rQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
 

rule 4360
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_.), x_Symbol] :> Int[(g*Cos[e + f*x])^p*((b + a*Sin[e + f*x])^m/Si 
n[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
 
Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.73

method result size
derivativedivides \(\frac {a \left (-\frac {\sin \left (d x +c \right )^{6}}{6}-\frac {\sin \left (d x +c \right )^{4}}{4}-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a \left (\frac {16}{5}+\sin \left (d x +c \right )^{6}+\frac {6 \sin \left (d x +c \right )^{4}}{5}+\frac {8 \sin \left (d x +c \right )^{2}}{5}\right ) \cos \left (d x +c \right )}{7}}{d}\) \(87\)
default \(\frac {a \left (-\frac {\sin \left (d x +c \right )^{6}}{6}-\frac {\sin \left (d x +c \right )^{4}}{4}-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a \left (\frac {16}{5}+\sin \left (d x +c \right )^{6}+\frac {6 \sin \left (d x +c \right )^{4}}{5}+\frac {8 \sin \left (d x +c \right )^{2}}{5}\right ) \cos \left (d x +c \right )}{7}}{d}\) \(87\)
parts \(-\frac {a \left (\frac {16}{5}+\sin \left (d x +c \right )^{6}+\frac {6 \sin \left (d x +c \right )^{4}}{5}+\frac {8 \sin \left (d x +c \right )^{2}}{5}\right ) \cos \left (d x +c \right )}{7 d}+\frac {a \left (-\frac {\sin \left (d x +c \right )^{6}}{6}-\frac {\sin \left (d x +c \right )^{4}}{4}-\frac {\sin \left (d x +c \right )^{2}}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )}{d}\) \(89\)
parallelrisch \(\frac {\left (192 \ln \left (\sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )-192 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-192 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {5732}{35}-105 \cos \left (d x +c \right )+21 \cos \left (3 d x +3 c \right )-\frac {21 \cos \left (5 d x +5 c \right )}{5}+\frac {3 \cos \left (7 d x +7 c \right )}{7}+87 \cos \left (2 d x +2 c \right )+\cos \left (6 d x +6 c \right )-12 \cos \left (4 d x +4 c \right )\right ) a}{192 d}\) \(123\)
risch \(i a x +\frac {2 i a c}{d}+\frac {29 a \,{\mathrm e}^{2 i \left (d x +c \right )}}{128 d}+\frac {29 a \,{\mathrm e}^{-2 i \left (d x +c \right )}}{128 d}-\frac {a \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}-\frac {35 a \cos \left (d x +c \right )}{64 d}+\frac {a \cos \left (7 d x +7 c \right )}{448 d}+\frac {a \cos \left (6 d x +6 c \right )}{192 d}-\frac {7 a \cos \left (5 d x +5 c \right )}{320 d}-\frac {a \cos \left (4 d x +4 c \right )}{16 d}+\frac {7 a \cos \left (3 d x +3 c \right )}{64 d}\) \(150\)
norman \(\frac {-\frac {32 a}{35 d}-\frac {128 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}}{3 d}-\frac {166 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{5 d}-\frac {224 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{3 d}-\frac {2 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{12}}{d}-\frac {42 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{5 d}-\frac {14 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}}{d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{7}}+\frac {a \ln \left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}\) \(182\)

Input:

int((a+a*sec(d*x+c))*sin(d*x+c)^7,x,method=_RETURNVERBOSE)
 

Output:

1/d*(a*(-1/6*sin(d*x+c)^6-1/4*sin(d*x+c)^4-1/2*sin(d*x+c)^2-ln(cos(d*x+c)) 
)-1/7*a*(16/5+sin(d*x+c)^6+6/5*sin(d*x+c)^4+8/5*sin(d*x+c)^2)*cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.78 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=\frac {60 \, a \cos \left (d x + c\right )^{7} + 70 \, a \cos \left (d x + c\right )^{6} - 252 \, a \cos \left (d x + c\right )^{5} - 315 \, a \cos \left (d x + c\right )^{4} + 420 \, a \cos \left (d x + c\right )^{3} + 630 \, a \cos \left (d x + c\right )^{2} - 420 \, a \cos \left (d x + c\right ) - 420 \, a \log \left (-\cos \left (d x + c\right )\right )}{420 \, d} \] Input:

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="fricas")
 

Output:

1/420*(60*a*cos(d*x + c)^7 + 70*a*cos(d*x + c)^6 - 252*a*cos(d*x + c)^5 - 
315*a*cos(d*x + c)^4 + 420*a*cos(d*x + c)^3 + 630*a*cos(d*x + c)^2 - 420*a 
*cos(d*x + c) - 420*a*log(-cos(d*x + c)))/d
 

Sympy [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))*sin(d*x+c)**7,x)
 

Output:

Timed out
 

Maxima [A] (verification not implemented)

Time = 0.03 (sec) , antiderivative size = 91, normalized size of antiderivative = 0.76 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=\frac {60 \, a \cos \left (d x + c\right )^{7} + 70 \, a \cos \left (d x + c\right )^{6} - 252 \, a \cos \left (d x + c\right )^{5} - 315 \, a \cos \left (d x + c\right )^{4} + 420 \, a \cos \left (d x + c\right )^{3} + 630 \, a \cos \left (d x + c\right )^{2} - 420 \, a \cos \left (d x + c\right ) - 420 \, a \log \left (\cos \left (d x + c\right )\right )}{420 \, d} \] Input:

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="maxima")
 

Output:

1/420*(60*a*cos(d*x + c)^7 + 70*a*cos(d*x + c)^6 - 252*a*cos(d*x + c)^5 - 
315*a*cos(d*x + c)^4 + 420*a*cos(d*x + c)^3 + 630*a*cos(d*x + c)^2 - 420*a 
*cos(d*x + c) - 420*a*log(cos(d*x + c)))/d
 

Giac [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.77 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=\frac {60 \, a \cos \left (d x + c\right )^{7} + 70 \, a \cos \left (d x + c\right )^{6} - 252 \, a \cos \left (d x + c\right )^{5} - 315 \, a \cos \left (d x + c\right )^{4} + 420 \, a \cos \left (d x + c\right )^{3} + 630 \, a \cos \left (d x + c\right )^{2} - 420 \, a \cos \left (d x + c\right ) - 420 \, a \log \left ({\left | \cos \left (d x + c\right ) \right |}\right )}{420 \, d} \] Input:

integrate((a+a*sec(d*x+c))*sin(d*x+c)^7,x, algorithm="giac")
 

Output:

1/420*(60*a*cos(d*x + c)^7 + 70*a*cos(d*x + c)^6 - 252*a*cos(d*x + c)^5 - 
315*a*cos(d*x + c)^4 + 420*a*cos(d*x + c)^3 + 630*a*cos(d*x + c)^2 - 420*a 
*cos(d*x + c) - 420*a*log(abs(cos(d*x + c))))/d
 

Mupad [B] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 89, normalized size of antiderivative = 0.75 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=-\frac {a\,\cos \left (c+d\,x\right )-\frac {3\,a\,{\cos \left (c+d\,x\right )}^2}{2}-a\,{\cos \left (c+d\,x\right )}^3+\frac {3\,a\,{\cos \left (c+d\,x\right )}^4}{4}+\frac {3\,a\,{\cos \left (c+d\,x\right )}^5}{5}-\frac {a\,{\cos \left (c+d\,x\right )}^6}{6}-\frac {a\,{\cos \left (c+d\,x\right )}^7}{7}+a\,\ln \left (\cos \left (c+d\,x\right )\right )}{d} \] Input:

int(sin(c + d*x)^7*(a + a/cos(c + d*x)),x)
                                                                                    
                                                                                    
 

Output:

-(a*cos(c + d*x) - (3*a*cos(c + d*x)^2)/2 - a*cos(c + d*x)^3 + (3*a*cos(c 
+ d*x)^4)/4 + (3*a*cos(c + d*x)^5)/5 - (a*cos(c + d*x)^6)/6 - (a*cos(c + d 
*x)^7)/7 + a*log(cos(c + d*x)))/d
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.16 \[ \int (a+a \sec (c+d x)) \sin ^7(c+d x) \, dx=\frac {a \left (-60 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{6}-72 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{4}-96 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2}-192 \cos \left (d x +c \right )+420 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )-420 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-420 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-70 \sin \left (d x +c \right )^{6}-105 \sin \left (d x +c \right )^{4}-210 \sin \left (d x +c \right )^{2}+192\right )}{420 d} \] Input:

int((a+a*sec(d*x+c))*sin(d*x+c)^7,x)
 

Output:

(a*( - 60*cos(c + d*x)*sin(c + d*x)**6 - 72*cos(c + d*x)*sin(c + d*x)**4 - 
 96*cos(c + d*x)*sin(c + d*x)**2 - 192*cos(c + d*x) + 420*log(tan((c + d*x 
)/2)**2 + 1) - 420*log(tan((c + d*x)/2) - 1) - 420*log(tan((c + d*x)/2) + 
1) - 70*sin(c + d*x)**6 - 105*sin(c + d*x)**4 - 210*sin(c + d*x)**2 + 192) 
)/(420*d)