\(\int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx\) [105]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [A] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F(-2)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 226 \[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\frac {a e^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {a e^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {a e^{3/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}+\sqrt {e} \tan (c+d x)}\right )}{\sqrt {2} d}-\frac {a e^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d \sqrt {e \tan (c+d x)}}+\frac {2 e (3 a+a \sec (c+d x)) \sqrt {e \tan (c+d x)}}{3 d} \] Output:

1/2*a*e^(3/2)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d-1/2 
*a*e^(3/2)*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/d-1/2*a* 
e^(3/2)*arctanh(2^(1/2)*(e*tan(d*x+c))^(1/2)/(e^(1/2)+e^(1/2)*tan(d*x+c))) 
*2^(1/2)/d-1/3*a*e^2*InverseJacobiAM(c-1/4*Pi+d*x,2^(1/2))*sec(d*x+c)*sin( 
2*d*x+2*c)^(1/2)/d/(e*tan(d*x+c))^(1/2)+2/3*e*(3*a+a*sec(d*x+c))*(e*tan(d* 
x+c))^(1/2)/d
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 11.83 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.95 \[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=-\frac {a e \cos (2 (c+d x)) \csc \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec ^2(c+d x)} \sqrt {e \tan (c+d x)} \left (4 \sqrt [4]{-1} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ),-1\right ) \sqrt {\tan (c+d x)}+\sqrt {\sec ^2(c+d x)} \left (12 \sin (c+d x)+3 \arcsin (\cos (c+d x)-\sin (c+d x)) \sqrt {\sin (2 (c+d x))}-3 \log \left (\cos (c+d x)+\sin (c+d x)+\sqrt {\sin (2 (c+d x))}\right ) \sqrt {\sin (2 (c+d x))}+4 \tan (c+d x)\right )\right )}{12 d \left (-1+\tan ^2(c+d x)\right )} \] Input:

Integrate[(a + a*Sec[c + d*x])*(e*Tan[c + d*x])^(3/2),x]
 

Output:

-1/12*(a*e*Cos[2*(c + d*x)]*Csc[(c + d*x)/2]*Sec[(c + d*x)/2]*Sqrt[Sec[c + 
 d*x]^2]*Sqrt[e*Tan[c + d*x]]*(4*(-1)^(1/4)*EllipticF[I*ArcSinh[(-1)^(1/4) 
*Sqrt[Tan[c + d*x]]], -1]*Sqrt[Tan[c + d*x]] + Sqrt[Sec[c + d*x]^2]*(12*Si 
n[c + d*x] + 3*ArcSin[Cos[c + d*x] - Sin[c + d*x]]*Sqrt[Sin[2*(c + d*x)]] 
- 3*Log[Cos[c + d*x] + Sin[c + d*x] + Sqrt[Sin[2*(c + d*x)]]]*Sqrt[Sin[2*( 
c + d*x)]] + 4*Tan[c + d*x])))/(d*(-1 + Tan[c + d*x]^2))
 

Rubi [A] (warning: unable to verify)

Time = 0.95 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.19, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.913, Rules used = {3042, 4369, 27, 3042, 4372, 3042, 3094, 3042, 3053, 3042, 3120, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a \sec (c+d x)+a) (e \tan (c+d x))^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx\)

\(\Big \downarrow \) 4369

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {2}{3} e^2 \int \frac {\sec (c+d x) a+3 a}{2 \sqrt {e \tan (c+d x)}}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \int \frac {\sec (c+d x) a+3 a}{\sqrt {e \tan (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) a+3 a}{\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4372

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+a \int \frac {\sec (c+d x)}{\sqrt {e \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+a \int \frac {\sec (c+d x)}{\sqrt {e \tan (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3094

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}}dx}{\sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+\frac {a \sqrt {\sin (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}}dx}{\sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3053

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \int \frac {1}{\sqrt {\sin (2 c+2 d x)}}dx}{\sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \int \frac {1}{\sqrt {\sin (2 c+2 d x)}}dx}{\sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (3 a \int \frac {1}{\sqrt {e \tan (c+d x)}}dx+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {3 a e \int \frac {1}{\sqrt {e \tan (c+d x)} \left (\tan ^2(c+d x) e^2+e^2\right )}d(e \tan (c+d x))}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \int \frac {1}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\int \frac {e^2 \tan ^2(c+d x)+e}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 e (a \sec (c+d x)+3 a) \sqrt {e \tan (c+d x)}}{3 d}-\frac {1}{3} e^2 \left (\frac {6 a e \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{d}+\frac {a \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )\)

Input:

Int[(a + a*Sec[c + d*x])*(e*Tan[c + d*x])^(3/2),x]
 

Output:

(2*e*(3*a + a*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]])/(3*d) - (e^2*((6*a*e*((- 
(ArcTan[1 - Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + 
Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e]))/(2*e) + (-1/2*Log[e - Sqr 
t[2]*e^(3/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(Sqrt[2]*Sqrt[e]) + Log[e 
+ Sqrt[2]*e^(3/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]))/ 
(2*e)))/d + (a*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2* 
d*x]])/(d*Sqrt[e*Tan[c + d*x]])))/3
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3053
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_ 
)]]), x_Symbol] :> Simp[Sqrt[Sin[2*e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b 
*Cos[e + f*x]])   Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f 
}, x]
 

rule 3094
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] 
:> Simp[Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*Sqrt[b*Tan[e + f*x]])   Int[ 
1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4369
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[(-e)*(e*Cot[c + d*x])^(m - 1)*((a*m + b*(m - 1)*Csc 
[c + d*x])/(d*m*(m - 1))), x] - Simp[e^2/m   Int[(e*Cot[c + d*x])^(m - 2)*( 
a*m + b*(m - 1)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m 
, 1]
 

rule 4372
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(e*Cot[c + d*x])^m, x], x] + Simp[b   Int[ 
(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x]
 
Maple [A] (verified)

Time = 2.20 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.19

method result size
parts \(\frac {2 a e \left (\sqrt {e \tan \left (d x +c \right )}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8}\right )}{d}-\frac {a \sqrt {e \tan \left (d x +c \right )}\, e \left (\sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \left (\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )-2 \sec \left (d x +c \right )\right )}{3 d}\) \(270\)
default \(\frac {a \sqrt {2}\, \sqrt {-\frac {2 \sin \left (d x +c \right ) \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right )^{2}}}\, e \sqrt {e \tan \left (d x +c \right )}\, \left (12+4 \sec \left (d x +c \right )+\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \left (-3 \cot \left (d x +c \right )-3 \csc \left (d x +c \right )\right )+\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (4 \cot \left (d x +c \right )+4 \csc \left (d x +c \right )\right )+\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \left (-3 \cot \left (d x +c \right )-3 \csc \left (d x +c \right )\right )+i \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \left (3 \cot \left (d x +c \right )+3 \csc \left (d x +c \right )\right )+i \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right ) \left (-3 \cot \left (d x +c \right )-3 \csc \left (d x +c \right )\right )\right )}{12 d \sqrt {-\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right )^{2}}}}\) \(584\)

Input:

int((a+a*sec(d*x+c))*(e*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2*a/d*e*((e*tan(d*x+c))^(1/2)-1/8*(e^2)^(1/4)*2^(1/2)*(ln((e*tan(d*x+c)+(e 
^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*tan(d*x+c)-(e^2)^(1 
/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4 
)*(e*tan(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/ 
2)+1)))-1/3*a/d*(e*tan(d*x+c))^(1/2)*e*((2*cot(d*x+c)-2*csc(d*x+c)+2)^(1/2 
)*(-csc(d*x+c)+cot(d*x+c))^(1/2)*EllipticF((-cot(d*x+c)+csc(d*x+c)+1)^(1/2 
),1/2*2^(1/2))*(-cot(d*x+c)+csc(d*x+c)+1)^(1/2)*(csc(d*x+c)+cot(d*x+c))-2* 
sec(d*x+c))
 

Fricas [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))*(e*tan(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=a \left (\int \left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}\, dx + \int \left (e \tan {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec {\left (c + d x \right )}\, dx\right ) \] Input:

integrate((a+a*sec(d*x+c))*(e*tan(d*x+c))**(3/2),x)
 

Output:

a*(Integral((e*tan(c + d*x))**(3/2), x) + Integral((e*tan(c + d*x))**(3/2) 
*sec(c + d*x), x))
 

Maxima [F(-2)]

Exception generated. \[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((a+a*sec(d*x+c))*(e*tan(d*x+c))^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 

Giac [F]

\[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )} \left (e \tan \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))*(e*tan(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate((a*sec(d*x + c) + a)*(e*tan(d*x + c))^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\int {\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right ) \,d x \] Input:

int((e*tan(c + d*x))^(3/2)*(a + a/cos(c + d*x)),x)
 

Output:

int((e*tan(c + d*x))^(3/2)*(a + a/cos(c + d*x)), x)
 

Reduce [F]

\[ \int (a+a \sec (c+d x)) (e \tan (c+d x))^{3/2} \, dx=\frac {\sqrt {e}\, a e \left (2 \sqrt {\tan \left (d x +c \right )}\, \sec \left (d x +c \right )+6 \sqrt {\tan \left (d x +c \right )}-3 \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\tan \left (d x +c \right )}d x \right ) d -\left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \sec \left (d x +c \right )}{\tan \left (d x +c \right )}d x \right ) d \right )}{3 d} \] Input:

int((a+a*sec(d*x+c))*(e*tan(d*x+c))^(3/2),x)
 

Output:

(sqrt(e)*a*e*(2*sqrt(tan(c + d*x))*sec(c + d*x) + 6*sqrt(tan(c + d*x)) - 3 
*int(sqrt(tan(c + d*x))/tan(c + d*x),x)*d - int((sqrt(tan(c + d*x))*sec(c 
+ d*x))/tan(c + d*x),x)*d))/(3*d)