\(\int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx\) [123]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (warning: unable to verify)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 257 \[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=-\frac {\sqrt {e} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}+\frac {\sqrt {e} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d}-\frac {\sqrt {e} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}+\sqrt {e} \tan (c+d x)}\right )}{\sqrt {2} a d}+\frac {2 e (1-\sec (c+d x))}{a d \sqrt {e \tan (c+d x)}}-\frac {2 \cos (c+d x) E\left (\left .c-\frac {\pi }{4}+d x\right |2\right ) \sqrt {e \tan (c+d x)}}{a d \sqrt {\sin (2 c+2 d x)}}+\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{a d e} \] Output:

-1/2*e^(1/2)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/a/d+1/ 
2*e^(1/2)*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/a/d-1/2*e 
^(1/2)*arctanh(2^(1/2)*(e*tan(d*x+c))^(1/2)/(e^(1/2)+e^(1/2)*tan(d*x+c)))* 
2^(1/2)/a/d+2*e*(1-sec(d*x+c))/a/d/(e*tan(d*x+c))^(1/2)+2*cos(d*x+c)*Ellip 
ticE(cos(c+1/4*Pi+d*x),2^(1/2))*(e*tan(d*x+c))^(1/2)/a/d/sin(2*d*x+2*c)^(1 
/2)+2*cos(d*x+c)*(e*tan(d*x+c))^(3/2)/a/d/e
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.86 (sec) , antiderivative size = 239, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\frac {i \left (-12 \left (-1+e^{i (c+d x)}-e^{2 i (c+d x)}+e^{3 i (c+d x)}\right )+3 \sqrt {-1+e^{4 i (c+d x)}} \arctan \left (\sqrt {-1+e^{4 i (c+d x)}}\right )-6 \sqrt {-1+e^{2 i (c+d x)}} \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {\frac {-1+e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}\right )+4 e^{3 i (c+d x)} \sqrt {1-e^{4 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},e^{4 i (c+d x)}\right )\right ) \sqrt {e \tan (c+d x)}}{6 a d \left (-1+e^{2 i (c+d x)}\right )} \] Input:

Integrate[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x]),x]
 

Output:

((I/6)*(-12*(-1 + E^(I*(c + d*x)) - E^((2*I)*(c + d*x)) + E^((3*I)*(c + d* 
x))) + 3*Sqrt[-1 + E^((4*I)*(c + d*x))]*ArcTan[Sqrt[-1 + E^((4*I)*(c + d*x 
))]] - 6*Sqrt[-1 + E^((2*I)*(c + d*x))]*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcT 
anh[Sqrt[(-1 + E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]] + 4*E^((3* 
I)*(c + d*x))*Sqrt[1 - E^((4*I)*(c + d*x))]*Hypergeometric2F1[1/2, 3/4, 7/ 
4, E^((4*I)*(c + d*x))])*Sqrt[e*Tan[c + d*x]])/(a*d*(-1 + E^((2*I)*(c + d* 
x))))
 

Rubi [A] (warning: unable to verify)

Time = 1.21 (sec) , antiderivative size = 298, normalized size of antiderivative = 1.16, number of steps used = 27, number of rules used = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.040, Rules used = {3042, 4376, 25, 3042, 4370, 27, 3042, 4372, 3042, 3093, 3042, 3095, 3042, 3052, 3042, 3119, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {e \tan (c+d x)}}{a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )}}{a \csc \left (c+d x+\frac {\pi }{2}\right )+a}dx\)

\(\Big \downarrow \) 4376

\(\displaystyle \frac {e^2 \int -\frac {a-a \sec (c+d x)}{(e \tan (c+d x))^{3/2}}dx}{a^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {e^2 \int \frac {a-a \sec (c+d x)}{(e \tan (c+d x))^{3/2}}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \int \frac {a-a \csc \left (c+d x+\frac {\pi }{2}\right )}{\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{a^2}\)

\(\Big \downarrow \) 4370

\(\displaystyle -\frac {e^2 \left (\frac {2 \int -\frac {1}{2} (\sec (c+d x) a+a) \sqrt {e \tan (c+d x)}dx}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {e^2 \left (-\frac {\int (\sec (c+d x) a+a) \sqrt {e \tan (c+d x)}dx}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (-\frac {\int \sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )dx}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 4372

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \int \sec (c+d x) \sqrt {e \tan (c+d x)}dx}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \int \sec (c+d x) \sqrt {e \tan (c+d x)}dx}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3093

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-2 \int \cos (c+d x) \sqrt {e \tan (c+d x)}dx\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-2 \int \frac {\sqrt {e \tan (c+d x)}}{\sec (c+d x)}dx\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3095

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)} \int \sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}dx}{\sqrt {\sin (c+d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)} \int \sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}dx}{\sqrt {\sin (c+d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3052

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) \sqrt {e \tan (c+d x)} \int \sqrt {\sin (2 c+2 d x)}dx}{\sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) \sqrt {e \tan (c+d x)} \int \sqrt {\sin (2 c+2 d x)}dx}{\sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {e^2 \left (-\frac {a \int \sqrt {e \tan (c+d x)}dx+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 3957

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {a e \int \frac {\sqrt {e \tan (c+d x)}}{\tan ^2(c+d x) e^2+e^2}d(e \tan (c+d x))}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \int \frac {e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 826

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \int \frac {e^2 \tan ^2(c+d x)+e}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}-\frac {1}{2} \int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}\right )-\frac {1}{2} \int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )-\frac {1}{2} \int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {e^2 \left (-\frac {\frac {2 a e \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}\right )+\frac {1}{2} \left (\frac {\log \left (-\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}\right )\right )}{d}+a \left (\frac {2 \cos (c+d x) (e \tan (c+d x))^{3/2}}{d e}-\frac {2 \cos (c+d x) E\left (\left .c+d x-\frac {\pi }{4}\right |2\right ) \sqrt {e \tan (c+d x)}}{d \sqrt {\sin (2 c+2 d x)}}\right )}{e^2}-\frac {2 (a-a \sec (c+d x))}{d e \sqrt {e \tan (c+d x)}}\right )}{a^2}\)

Input:

Int[Sqrt[e*Tan[c + d*x]]/(a + a*Sec[c + d*x]),x]
 

Output:

-((e^2*((-2*(a - a*Sec[c + d*x]))/(d*e*Sqrt[e*Tan[c + d*x]]) - ((2*a*e*((- 
(ArcTan[1 - Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e])) + ArcTan[1 + 
Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e]))/2 + (Log[e - Sqrt[2]*e^(3 
/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]) - Log[e + Sqrt[ 
2]*e^(3/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(2*Sqrt[2]*Sqrt[e]))/2))/d + 
 a*((-2*Cos[c + d*x]*EllipticE[c - Pi/4 + d*x, 2]*Sqrt[e*Tan[c + d*x]])/(d 
*Sqrt[Sin[2*c + 2*d*x]]) + (2*Cos[c + d*x]*(e*Tan[c + d*x])^(3/2))/(d*e))) 
/e^2))/a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3052
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]] 
, x_Symbol] :> Simp[Sqrt[a*Sin[e + f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e 
 + 2*f*x]])   Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}, x]
 

rule 3093
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[a^2*(a*Sec[e + f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 
1)/(b*f*(m + n - 1))), x] + Simp[a^2*((m - 2)/(m + n - 1))   Int[(a*Sec[e + 
 f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && ( 
GtQ[m, 1] || (EqQ[m, 1] && EqQ[n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[ 
2*m, 2*n]
 

rule 3095
Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] 
:> Simp[Sqrt[Cos[e + f*x]]*(Sqrt[b*Tan[e + f*x]]/Sqrt[Sin[e + f*x]])   Int[ 
Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4370
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_)), x_Symbol] :> Simp[(-(e*Cot[c + d*x])^(m + 1))*((a + b*Csc[c + d*x])/( 
d*e*(m + 1))), x] - Simp[1/(e^2*(m + 1))   Int[(e*Cot[c + d*x])^(m + 2)*(a* 
(m + 1) + b*(m + 2)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && L 
tQ[m, -1]
 

rule 4372
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(e*Cot[c + d*x])^m, x], x] + Simp[b   Int[ 
(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x]
 

rule 4376
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Simp[a^(2*n)/e^(2*n)   Int[(e*Cot[c + d*x])^(m + 2* 
n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a 
^2 - b^2, 0] && ILtQ[n, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.74 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.98

method result size
default \(\frac {\left (-\frac {1}{2}+\frac {i}{2}\right ) \left (\operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-2 i \operatorname {EllipticE}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+i \operatorname {EllipticF}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \operatorname {EllipticE}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+\operatorname {EllipticF}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )\right ) \sqrt {e \tan \left (d x +c \right )}\, \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \left (\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{a d}\) \(251\)

Input:

int((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x,method=_RETURNVERBOSE)
 

Output:

(-1/2+1/2*I)/a/d*(EllipticPi((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2-1/2*I,1/ 
2*2^(1/2))+I*EllipticPi((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^( 
1/2))-2*I*EllipticE((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2*2^(1/2))+I*Ellipt 
icF((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2*2^(1/2))-2*EllipticE((-cot(d*x+c) 
+csc(d*x+c)+1)^(1/2),1/2*2^(1/2))+EllipticF((-cot(d*x+c)+csc(d*x+c)+1)^(1/ 
2),1/2*2^(1/2)))*(e*tan(d*x+c))^(1/2)*(-cot(d*x+c)+csc(d*x+c)+1)^(1/2)*(2* 
cot(d*x+c)-2*csc(d*x+c)+2)^(1/2)*(-csc(d*x+c)+cot(d*x+c))^(1/2)*(csc(d*x+c 
)+cot(d*x+c))
 

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\text {Timed out} \] Input:

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\frac {\int \frac {\sqrt {e \tan {\left (c + d x \right )}}}{\sec {\left (c + d x \right )} + 1}\, dx}{a} \] Input:

integrate((e*tan(d*x+c))**(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

Integral(sqrt(e*tan(c + d*x))/(sec(c + d*x) + 1), x)/a
 

Maxima [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\int { \frac {\sqrt {e \tan \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="maxima")
 

Output:

integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\int { \frac {\sqrt {e \tan \left (d x + c\right )}}{a \sec \left (d x + c\right ) + a} \,d x } \] Input:

integrate((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x, algorithm="giac")
 

Output:

integrate(sqrt(e*tan(d*x + c))/(a*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}}{a\,\left (\cos \left (c+d\,x\right )+1\right )} \,d x \] Input:

int((e*tan(c + d*x))^(1/2)/(a + a/cos(c + d*x)),x)
 

Output:

int((cos(c + d*x)*(e*tan(c + d*x))^(1/2))/(a*(cos(c + d*x) + 1)), x)
 

Reduce [F]

\[ \int \frac {\sqrt {e \tan (c+d x)}}{a+a \sec (c+d x)} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\tan \left (d x +c \right )}}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int((e*tan(d*x+c))^(1/2)/(a+a*sec(d*x+c)),x)
 

Output:

(sqrt(e)*int(sqrt(tan(c + d*x))/(sec(c + d*x) + 1),x))/a