\(\int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx\) [130]

Optimal result
Mathematica [F]
Rubi [A] (verified)
Maple [C] (warning: unable to verify)
Fricas [F(-1)]
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 222 \[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=-\frac {e^{7/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}+\frac {e^{7/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a^2 d}+\frac {e^{7/2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}+\sqrt {e} \tan (c+d x)}\right )}{\sqrt {2} a^2 d}-\frac {2 e^4 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{a^2 d \sqrt {e \tan (c+d x)}}+\frac {2 e^3 \sqrt {e \tan (c+d x)}}{a^2 d} \] Output:

-1/2*e^(7/2)*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/a^2/d+ 
1/2*e^(7/2)*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))*2^(1/2)/a^2/d+1 
/2*e^(7/2)*arctanh(2^(1/2)*(e*tan(d*x+c))^(1/2)/(e^(1/2)+e^(1/2)*tan(d*x+c 
)))*2^(1/2)/a^2/d-2*e^4*InverseJacobiAM(c-1/4*Pi+d*x,2^(1/2))*sec(d*x+c)*s 
in(2*d*x+2*c)^(1/2)/a^2/d/(e*tan(d*x+c))^(1/2)+2*e^3*(e*tan(d*x+c))^(1/2)/ 
a^2/d
 

Mathematica [F]

\[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx \] Input:

Integrate[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2,x]
 

Output:

Integrate[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2, x]
 

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 285, normalized size of antiderivative = 1.28, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 4376, 3042, 4374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e \tan (c+d x))^{7/2}}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (-e \cot \left (c+d x+\frac {\pi }{2}\right )\right )^{7/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4376

\(\displaystyle \frac {e^4 \int \frac {(a-a \sec (c+d x))^2}{\sqrt {e \tan (c+d x)}}dx}{a^4}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {e^4 \int \frac {\left (a-a \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}{\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^4}\)

\(\Big \downarrow \) 4374

\(\displaystyle \frac {e^4 \int \left (\frac {\sec ^2(c+d x) a^2}{\sqrt {e \tan (c+d x)}}-\frac {2 \sec (c+d x) a^2}{\sqrt {e \tan (c+d x)}}+\frac {a^2}{\sqrt {e \tan (c+d x)}}\right )dx}{a^4}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (-\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \sqrt {e}}+\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \sqrt {e}}+\frac {2 a^2 \sqrt {e \tan (c+d x)}}{d e}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \sqrt {e}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \sqrt {e}}-\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{d \sqrt {e \tan (c+d x)}}\right )}{a^4}\)

Input:

Int[(e*Tan[c + d*x])^(7/2)/(a + a*Sec[c + d*x])^2,x]
 

Output:

(e^4*(-((a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]* 
d*Sqrt[e])) + (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sq 
rt[2]*d*Sqrt[e]) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[ 
e*Tan[c + d*x]]])/(2*Sqrt[2]*d*Sqrt[e]) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c 
 + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2*Sqrt[2]*d*Sqrt[e]) - (2*a^2*El 
lipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(d*Sqrt[e* 
Tan[c + d*x]]) + (2*a^2*Sqrt[e*Tan[c + d*x]])/(d*e)))/a^4
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4374
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Int[ExpandIntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[ 
c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
 

rule 4376
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + ( 
a_))^(n_), x_Symbol] :> Simp[a^(2*n)/e^(2*n)   Int[(e*Cot[c + d*x])^(m + 2* 
n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[a 
^2 - b^2, 0] && ILtQ[n, 0]
 
Maple [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.85 (sec) , antiderivative size = 564, normalized size of antiderivative = 2.54

method result size
default \(-\frac {\sqrt {2}\, e^{3} \tan \left (d x +c \right )^{3} \sqrt {e \tan \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{4} \sqrt {-\frac {2 \sin \left (d x +c \right ) \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right )^{2}}}\, \left (i \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-i \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-6 \sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )+\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}\, \sqrt {2 \cot \left (d x +c \right )-2 \csc \left (d x +c \right )+2}\, \sqrt {-\csc \left (d x +c \right )+\cot \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+4 \csc \left (d x +c \right )-4 \cot \left (d x +c \right )\right ) \sin \left (d x +c \right )^{3}}{64 a^{2} d \left (1-\cos \left (d x +c \right )\right )^{3} \left (-\frac {\sin \left (d x +c \right ) \cos \left (d x +c \right )}{\left (1+\cos \left (d x +c \right )\right )^{2}}\right )^{\frac {3}{2}}}\) \(564\)

Input:

int((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

-1/64/a^2/d*2^(1/2)*e^3*tan(d*x+c)^3*(e*tan(d*x+c))^(1/2)*((1-cos(d*x+c))^ 
2*csc(d*x+c)^2-1)^4*(-2*sin(d*x+c)*cos(d*x+c)/(1+cos(d*x+c))^2)^(1/2)*(I*( 
-cot(d*x+c)+csc(d*x+c)+1)^(1/2)*(2*cot(d*x+c)-2*csc(d*x+c)+2)^(1/2)*(-csc( 
d*x+c)+cot(d*x+c))^(1/2)*EllipticPi((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2-1 
/2*I,1/2*2^(1/2))-I*(-cot(d*x+c)+csc(d*x+c)+1)^(1/2)*(2*cot(d*x+c)-2*csc(d 
*x+c)+2)^(1/2)*(-csc(d*x+c)+cot(d*x+c))^(1/2)*EllipticPi((-cot(d*x+c)+csc( 
d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))-6*(-cot(d*x+c)+csc(d*x+c)+1)^(1/2)* 
(2*cot(d*x+c)-2*csc(d*x+c)+2)^(1/2)*(-csc(d*x+c)+cot(d*x+c))^(1/2)*Ellipti 
cF((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2*2^(1/2))+(-cot(d*x+c)+csc(d*x+c)+1 
)^(1/2)*(2*cot(d*x+c)-2*csc(d*x+c)+2)^(1/2)*(-csc(d*x+c)+cot(d*x+c))^(1/2) 
*EllipticPi((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))+(-cot( 
d*x+c)+csc(d*x+c)+1)^(1/2)*(2*cot(d*x+c)-2*csc(d*x+c)+2)^(1/2)*(-csc(d*x+c 
)+cot(d*x+c))^(1/2)*EllipticPi((-cot(d*x+c)+csc(d*x+c)+1)^(1/2),1/2+1/2*I, 
1/2*2^(1/2))+4*csc(d*x+c)-4*cot(d*x+c))/(1-cos(d*x+c))^3*sin(d*x+c)^3/(-si 
n(d*x+c)*cos(d*x+c)/(1+cos(d*x+c))^2)^(3/2)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")
 

Output:

Timed out
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((e*tan(d*x+c))**(7/2)/(a+a*sec(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {\left (e \tan \left (d x + c\right )\right )^{\frac {7}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")
 

Output:

integrate((e*tan(d*x + c))^(7/2)/(a*sec(d*x + c) + a)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^2\,{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{7/2}}{a^2\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \] Input:

int((e*tan(c + d*x))^(7/2)/(a + a/cos(c + d*x))^2,x)
 

Output:

int((cos(c + d*x)^2*(e*tan(c + d*x))^(7/2))/(a^2*(cos(c + d*x) + 1)^2), x)
 

Reduce [F]

\[ \int \frac {(e \tan (c+d x))^{7/2}}{(a+a \sec (c+d x))^2} \, dx=\frac {\sqrt {e}\, \left (\int \frac {\sqrt {\tan \left (d x +c \right )}\, \tan \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) e^{3}}{a^{2}} \] Input:

int((e*tan(d*x+c))^(7/2)/(a+a*sec(d*x+c))^2,x)
 

Output:

(sqrt(e)*int((sqrt(tan(c + d*x))*tan(c + d*x)**3)/(sec(c + d*x)**2 + 2*sec 
(c + d*x) + 1),x)*e**3)/a**2