\(\int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx\) [144]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 109 \[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=-\frac {2 \sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {2} d}-\frac {\cot (c+d x) \sqrt {a+a \sec (c+d x)}}{d} \] Output:

-2*a^(1/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+1/2*a^(1/2) 
*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/d-c 
ot(d*x+c)*(a+a*sec(d*x+c))^(1/2)/d
 

Mathematica [A] (warning: unable to verify)

Time = 1.83 (sec) , antiderivative size = 124, normalized size of antiderivative = 1.14 \[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {\sqrt {a (1+\sec (c+d x))} \left (-\frac {4 \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}}}{\sqrt {\frac {1}{1+\cos (c+d x)}}}-2 \cot (c+d x)+\sqrt {2} \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\frac {1}{1+\sec (c+d x)}}\right )}{2 d} \] Input:

Integrate[Cot[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(Sqrt[a*(1 + Sec[c + d*x])]*((-4*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + Sec[c + 
 d*x])^(-1)]]*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])^2])/Sqrt[(1 + Cos[c + d 
*x])^(-1)] - 2*Cot[c + d*x] + Sqrt[2]*ArcSin[Tan[(c + d*x)/2]]*Sqrt[(1 + S 
ec[c + d*x])^(-1)]))/(2*d)
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3042, 4375, 382, 25, 27, 397, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(c+d x) \sqrt {a \sec (c+d x)+a} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}{\cot \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 \int \frac {\cot ^2(c+d x) (\sec (c+d x) a+a)}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 382

\(\displaystyle -\frac {2 \left (\frac {1}{2} \int -\frac {a \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+3\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )+\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} \int \frac {a \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+3\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \int \frac {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+3}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle -\frac {2 \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \left (2 \int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-\int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )\right )}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \left (\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {2} \sqrt {a}}-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a}}\right )\right )}{d}\)

Input:

Int[Cot[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*(-1/2*(a*((-2*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]) 
/Sqrt[a] + ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]] 
)]/(Sqrt[2]*Sqrt[a]))) + (Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/2))/d
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 382
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/ 
(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b* 
x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m 
+ 2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[ 
b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(256\) vs. \(2(93)=186\).

Time = 0.70 (sec) , antiderivative size = 257, normalized size of antiderivative = 2.36

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (2 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cot \left (d x +c \right )+\left (2 \cos \left (d x +c \right )-2\right ) \cot \left (d x +c \right )-2 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{2 d \left (1+\cos \left (d x +c \right )\right )}\) \(257\)

Input:

int(cot(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/d*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))*(2*2^(1/2)*(1+cos(d*x+c))*(- 
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cot( 
d*x+c)+(2*cos(d*x+c)-2)*cot(d*x+c)-2*2^(1/2)*(1+cos(d*x+c))*(-2*cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*arctanh(2^(1/2)/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+ 
c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c)))+(1+cos(d*x+c))*(-2*cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d* 
x+c)+csc(d*x+c)))
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 422, normalized size of antiderivative = 3.87 \[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\left [\frac {\sqrt {2} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) + 2 \, \sqrt {-a} \log \left (-\frac {8 \, a \cos \left (d x + c\right )^{3} + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) - 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{4 \, d \sin \left (d x + c\right )}, -\frac {\sqrt {2} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 2 \, \sqrt {a} \arctan \left (\frac {2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a}\right ) \sin \left (d x + c\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{2 \, d \sin \left (d x + c\right )}\right ] \] Input:

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[1/4*(sqrt(2)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/ 
cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x 
 + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))*sin(d*x + c) + 2*sqrt(-a 
)*log(-(8*a*cos(d*x + c)^3 + 4*(2*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c) + 
a)/(cos(d*x + c) + 1))*sin(d*x + c) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x 
+ c))*cos(d*x + c))/(d*sin(d*x + c)), -1/2*(sqrt(2)*sqrt(a)*arctan(sqrt(2) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c 
)))*sin(d*x + c) + 2*sqrt(a)*arctan(2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/co 
s(d*x + c))*cos(d*x + c)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos(d*x + c) 
 - a))*sin(d*x + c) + 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + 
c))/(d*sin(d*x + c))]
 

Sympy [F]

\[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \cot ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate(cot(d*x+c)**2*(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(sqrt(a*(sec(c + d*x) + 1))*cot(c + d*x)**2, x)
 

Maxima [F]

\[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int { \sqrt {a \sec \left (d x + c\right ) + a} \cot \left (d x + c\right )^{2} \,d x } \] Input:

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(a*sec(d*x + c) + a)*cot(d*x + c)^2, x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 236 vs. \(2 (93) = 186\).

Time = 0.35 (sec) , antiderivative size = 236, normalized size of antiderivative = 2.17 \[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\frac {\sqrt {2} {\left (\frac {2 \, \sqrt {2} \sqrt {-a} a \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \sqrt {-a} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right ) + \frac {4 \, \sqrt {-a} a}{{\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{4 \, d} \] Input:

integrate(cot(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/4*sqrt(2)*(2*sqrt(2)*sqrt(-a)*a*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) 
 - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2* 
(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 
4*sqrt(2)*abs(a) - 6*a))/abs(a) + sqrt(-a)*log((sqrt(-a)*tan(1/2*d*x + 1/2 
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2) + 4*sqrt(-a)*a/((sqrt(-a)*ta 
n(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a))*sgn(cos( 
d*x + c))/d
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\int {\mathrm {cot}\left (c+d\,x\right )}^2\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(cot(c + d*x)^2*(a + a/cos(c + d*x))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int(cot(c + d*x)^2*(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \cot ^2(c+d x) \sqrt {a+a \sec (c+d x)} \, dx=\sqrt {a}\, \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cot \left (d x +c \right )^{2}d x \right ) \] Input:

int(cot(d*x+c)^2*(a+a*sec(d*x+c))^(1/2),x)
 

Output:

sqrt(a)*int(sqrt(sec(c + d*x) + 1)*cot(c + d*x)**2,x)