\(\int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx\) [167]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 160 \[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=-\frac {2 a^{5/2} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^3 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {14 a^4 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^5 \tan ^5(c+d x)}{d (a+a \sec (c+d x))^{5/2}}+\frac {2 a^6 \tan ^7(c+d x)}{7 d (a+a \sec (c+d x))^{7/2}} \] Output:

-2*a^(5/2)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2*a^3*tan(d 
*x+c)/d/(a+a*sec(d*x+c))^(1/2)+14/3*a^4*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3 
/2)+2*a^5*tan(d*x+c)^5/d/(a+a*sec(d*x+c))^(5/2)+2/7*a^6*tan(d*x+c)^7/d/(a+ 
a*sec(d*x+c))^(7/2)
 

Mathematica [A] (verified)

Time = 6.38 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.78 \[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=-\frac {a^2 \sec \left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \sqrt {a (1+\sec (c+d x))} \left (42 \sqrt {2} \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos ^{\frac {7}{2}}(c+d x)-35 \sin \left (\frac {1}{2} (c+d x)\right )+7 \sin \left (\frac {3}{2} (c+d x)\right )-21 \sin \left (\frac {5}{2} (c+d x)\right )+5 \sin \left (\frac {7}{2} (c+d x)\right )\right )}{42 d} \] Input:

Integrate[(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x]^2,x]
 

Output:

-1/42*(a^2*Sec[(c + d*x)/2]*Sec[c + d*x]^3*Sqrt[a*(1 + Sec[c + d*x])]*(42* 
Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x]^(7/2) - 35*Sin[(c + 
d*x)/2] + 7*Sin[(3*(c + d*x))/2] - 21*Sin[(5*(c + d*x))/2] + 5*Sin[(7*(c + 
 d*x))/2]))/d
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 147, normalized size of antiderivative = 0.92, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4375, 364, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^2(c+d x) (a \sec (c+d x)+a)^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 a^4 \int \frac {\tan ^2(c+d x) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^3}{(\sec (c+d x) a+a) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 364

\(\displaystyle -\frac {2 a^4 \int \left (\frac {a^2 \tan ^6(c+d x)}{(\sec (c+d x) a+a)^3}+\frac {5 a \tan ^4(c+d x)}{(\sec (c+d x) a+a)^2}+\frac {7 \tan ^2(c+d x)}{\sec (c+d x) a+a}+\frac {1}{a}-\frac {1}{a \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}\right )d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a^4 \left (\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2}}-\frac {a^2 \tan ^7(c+d x)}{7 (a \sec (c+d x)+a)^{7/2}}-\frac {a \tan ^5(c+d x)}{(a \sec (c+d x)+a)^{5/2}}-\frac {7 \tan ^3(c+d x)}{3 (a \sec (c+d x)+a)^{3/2}}-\frac {\tan (c+d x)}{a \sqrt {a \sec (c+d x)+a}}\right )}{d}\)

Input:

Int[(a + a*Sec[c + d*x])^(5/2)*Tan[c + d*x]^2,x]
 

Output:

(-2*a^4*(ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]/a^(3/2) - 
 Tan[c + d*x]/(a*Sqrt[a + a*Sec[c + d*x]]) - (7*Tan[c + d*x]^3)/(3*(a + a* 
Sec[c + d*x])^(3/2)) - (a*Tan[c + d*x]^5)/(a + a*Sec[c + d*x])^(5/2) - (a^ 
2*Tan[c + d*x]^7)/(7*(a + a*Sec[c + d*x])^(7/2))))/d
 

Defintions of rubi rules used

rule 364
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), 
x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*((a + b*x^2)^p/(c + d*x^2)), x], x 
] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && (In 
tegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [A] (verified)

Time = 40.78 (sec) , antiderivative size = 161, normalized size of antiderivative = 1.01

method result size
default \(\frac {2 a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (-10 \cos \left (d x +c \right )^{3}+16 \cos \left (d x +c \right )^{2}+12 \cos \left (d x +c \right )+3\right ) \tan \left (d x +c \right ) \sec \left (d x +c \right )^{2}+21 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )\right )}{21 d \left (1+\cos \left (d x +c \right )\right )}\) \(161\)

Input:

int((a+a*sec(d*x+c))^(5/2)*tan(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

2/21/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))*((-10*cos(d*x+c)^3+16*c 
os(d*x+c)^2+12*cos(d*x+c)+3)*tan(d*x+c)*sec(d*x+c)^2+21*(1+cos(d*x+c))*(-c 
os(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/( 
cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 374, normalized size of antiderivative = 2.34 \[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\left [\frac {21 \, {\left (a^{2} \cos \left (d x + c\right )^{4} + a^{2} \cos \left (d x + c\right )^{3}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 2 \, {\left (10 \, a^{2} \cos \left (d x + c\right )^{3} - 16 \, a^{2} \cos \left (d x + c\right )^{2} - 12 \, a^{2} \cos \left (d x + c\right ) - 3 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{21 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}, \frac {2 \, {\left (21 \, {\left (a^{2} \cos \left (d x + c\right )^{4} + a^{2} \cos \left (d x + c\right )^{3}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (10 \, a^{2} \cos \left (d x + c\right )^{3} - 16 \, a^{2} \cos \left (d x + c\right )^{2} - 12 \, a^{2} \cos \left (d x + c\right ) - 3 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{21 \, {\left (d \cos \left (d x + c\right )^{4} + d \cos \left (d x + c\right )^{3}\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*tan(d*x+c)^2,x, algorithm="fricas")
 

Output:

[1/21*(21*(a^2*cos(d*x + c)^4 + a^2*cos(d*x + c)^3)*sqrt(-a)*log((2*a*cos( 
d*x + c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + 
c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 2*(10*a^2*cos( 
d*x + c)^3 - 16*a^2*cos(d*x + c)^2 - 12*a^2*cos(d*x + c) - 3*a^2)*sqrt((a* 
cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^4 + d*cos(d* 
x + c)^3), 2/21*(21*(a^2*cos(d*x + c)^4 + a^2*cos(d*x + c)^3)*sqrt(a)*arct 
an(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + 
 c))) - (10*a^2*cos(d*x + c)^3 - 16*a^2*cos(d*x + c)^2 - 12*a^2*cos(d*x + 
c) - 3*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d 
*x + c)^4 + d*cos(d*x + c)^3)]
 

Sympy [F]

\[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\int \left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}} \tan ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate((a+a*sec(d*x+c))**(5/2)*tan(d*x+c)**2,x)
 

Output:

Integral((a*(sec(c + d*x) + 1))**(5/2)*tan(c + d*x)**2, x)
 

Maxima [F]

\[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\int { {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \tan \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*tan(d*x+c)^2,x, algorithm="maxima")
 

Output:

1/42*(21*((a^2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d 
*x + 2*c) + a^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos( 
2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) 
 + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) 
^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - (a^ 
2*cos(2*d*x + 2*c)^2 + a^2*sin(2*d*x + 2*c)^2 + 2*a^2*cos(2*d*x + 2*c) + a 
^2)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
+ 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos( 
2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - 2*(a^2*d*cos(2*d 
*x + 2*c)^2 + a^2*d*sin(2*d*x + 2*c)^2 + 2*a^2*d*cos(2*d*x + 2*c) + a^2*d) 
*integrate((((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2 
*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*s 
in(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(9/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2 
*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2 
*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(9/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))))*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 
 ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) 
 - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2...
 

Giac [A] (verification not implemented)

Time = 1.16 (sec) , antiderivative size = 281, normalized size of antiderivative = 1.76 \[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\frac {\frac {21 \, \sqrt {-a} a^{3} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} - \frac {2 \, {\left (21 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (35 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (17 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 49 \, \sqrt {2} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{3} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{21 \, d} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*tan(d*x+c)^2,x, algorithm="giac")
 

Output:

1/21*(21*sqrt(-a)*a^3*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*t 
an(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(-a)*ta 
n(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*ab 
s(a) - 6*a))*sgn(cos(d*x + c))/abs(a) - 2*(21*sqrt(2)*a^6*sgn(cos(d*x + c) 
) + (35*sqrt(2)*a^6*sgn(cos(d*x + c)) + (17*sqrt(2)*a^6*sgn(cos(d*x + c))* 
tan(1/2*d*x + 1/2*c)^2 - 49*sqrt(2)*a^6*sgn(cos(d*x + c)))*tan(1/2*d*x + 1 
/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/ 
2*c)^2 - a)^3*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/d
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \] Input:

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int(tan(c + d*x)^2*(a + a/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int (a+a \sec (c+d x))^{5/2} \tan ^2(c+d x) \, dx=\sqrt {a}\, a^{2} \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2} \tan \left (d x +c \right )^{2}d x +\int \sqrt {\sec \left (d x +c \right )+1}\, \tan \left (d x +c \right )^{2}d x +2 \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right ) \tan \left (d x +c \right )^{2}d x \right )\right ) \] Input:

int((a+a*sec(d*x+c))^(5/2)*tan(d*x+c)^2,x)
                                                                                    
                                                                                    
 

Output:

sqrt(a)*a**2*(int(sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2*tan(c + d*x)**2,x 
) + int(sqrt(sec(c + d*x) + 1)*tan(c + d*x)**2,x) + 2*int(sqrt(sec(c + d*x 
) + 1)*sec(c + d*x)*tan(c + d*x)**2,x))