\(\int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [190]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 95 \[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {2 \tan (c+d x)}{a d \sqrt {a+a \sec (c+d x)}}+\frac {2 \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}} \] Output:

2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-2*tan(d*x+c) 
/a/d/(a+a*sec(d*x+c))^(1/2)+2/3*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 2.96 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.71 \[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {64 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \cot ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^5(c+d x) \left (\frac {1}{1+\sec (c+d x)}\right )^{7/2} \left (3 \arcsin \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\cos (c+d x)}}}\right ) \cos ^2(c+d x)+\sqrt {\cos (c+d x)} \sqrt {\frac {1}{1+\cos (c+d x)}} (\sin (c+d x)-2 \sin (2 (c+d x)))\right )}{3 d \left (-1+\cot ^2\left (\frac {1}{2} (c+d x)\right )\right )^2 (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[Tan[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(64*Cos[(c + d*x)/2]^6*Cot[(c + d*x)/2]^4*Sec[c + d*x]^5*((1 + Sec[c + d*x 
])^(-1))^(7/2)*(3*ArcSin[Tan[(c + d*x)/2]/Sqrt[(1 + Cos[c + d*x])^(-1)]]*C 
os[c + d*x]^2 + Sqrt[Cos[c + d*x]]*Sqrt[(1 + Cos[c + d*x])^(-1)]*(Sin[c + 
d*x] - 2*Sin[2*(c + d*x)])))/(3*d*(-1 + Cot[(c + d*x)/2]^2)^2*(a*(1 + Sec[ 
c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.99, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4375, 254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(c+d x)}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^4}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 a \int \frac {\tan ^4(c+d x)}{(\sec (c+d x) a+a)^2 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 254

\(\displaystyle -\frac {2 a \int \left (\frac {\tan ^2(c+d x)}{a (\sec (c+d x) a+a)}+\frac {1}{a^2 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}-\frac {1}{a^2}\right )d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a \left (-\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{5/2}}+\frac {\tan (c+d x)}{a^2 \sqrt {a \sec (c+d x)+a}}-\frac {\tan ^3(c+d x)}{3 a (a \sec (c+d x)+a)^{3/2}}\right )}{d}\)

Input:

Int[Tan[c + d*x]^4/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

(-2*a*(-(ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]/a^(5/2)) 
+ Tan[c + d*x]/(a^2*Sqrt[a + a*Sec[c + d*x]]) - Tan[c + d*x]^3/(3*a*(a + a 
*Sec[c + d*x])^(3/2))))/d
 

Defintions of rubi rules used

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [A] (verified)

Time = 1.22 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.42

method result size
default \(-\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (8 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )-3 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )\right )}{3 d \,a^{2} \left (1+\cos \left (d x +c \right )\right )}\) \(135\)

Input:

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-1/3/d/a^2*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))*(8*sin(d*x+c)-2*tan(d*x 
+c)-3*2^(1/2)*(1+cos(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh( 
2^(1/2)/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d 
*x+c)-cot(d*x+c))))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 295, normalized size of antiderivative = 3.11 \[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (4 \, \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}, -\frac {2 \, {\left (3 \, {\left (\cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (4 \, \cos \left (d x + c\right ) - 1\right )} \sin \left (d x + c\right )\right )}}{3 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}}\right ] \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

[-1/3*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(-a)*log((2*a*cos(d*x + c)^2 
+ 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x 
+ c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*sqrt((a*cos(d*x + c) + 
a)/cos(d*x + c))*(4*cos(d*x + c) - 1)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 
+ a^2*d*cos(d*x + c)), -2/3*(3*(cos(d*x + c)^2 + cos(d*x + c))*sqrt(a)*arc 
tan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x 
+ c))) + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(4*cos(d*x + c) - 1)*sin( 
d*x + c))/(a^2*d*cos(d*x + c)^2 + a^2*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(tan(d*x+c)**4/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral(tan(c + d*x)**4/(a*(sec(c + d*x) + 1))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{4}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

-1/6*(3*(2*a^2*d*integrate(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*c 
os(2*d*x + 2*c) + 1)^(3/4)*(((cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos( 
8*d*x + 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*co 
s(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(10*d*x + 10*c)* 
sin(2*d*x + 2*c) + 4*sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 6*sin(6*d*x + 6*c 
)*sin(2*d*x + 2*c) + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c 
)^2)*cos(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2 
*c)*sin(10*d*x + 10*c) + 4*cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d*x 
 + 2*c)*sin(6*d*x + 6*c) + 4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d* 
x + 10*c)*sin(2*d*x + 2*c) - 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos(6 
*d*x + 6*c)*sin(2*d*x + 2*c) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(5/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1)) + ((cos(2*d*x + 2*c)*sin(10*d*x + 10*c) + 4 
*cos(2*d*x + 2*c)*sin(8*d*x + 8*c) + 6*cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 
 4*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(10*d*x + 10*c)*sin(2*d*x + 2*c) 
 - 4*cos(8*d*x + 8*c)*sin(2*d*x + 2*c) - 6*cos(6*d*x + 6*c)*sin(2*d*x + 2* 
c) - 4*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d*x + 2*c) 
, cos(2*d*x + 2*c))) - (cos(10*d*x + 10*c)*cos(2*d*x + 2*c) + 4*cos(8*d*x 
+ 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 4*cos(4*d* 
x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(10*d*x + 10*c)*sin...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 230 vs. \(2 (83) = 166\).

Time = 0.96 (sec) , antiderivative size = 230, normalized size of antiderivative = 2.42 \[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {3 \, \sqrt {-a} {\left (\frac {\log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} + \frac {2 \, {\left (\frac {5 \, \sqrt {2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{\mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {3 \, \sqrt {2}}{\mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{3 \, d} \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

-1/3*(3*sqrt(-a)*(log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2 
*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3)))/(a^2*sgn(cos(d*x + c))) - lo 
g(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a) 
)^2 + a*(2*sqrt(2) - 3)))/(a^2*sgn(cos(d*x + c)))) + 2*(5*sqrt(2)*tan(1/2* 
d*x + 1/2*c)^2/sgn(cos(d*x + c)) - 3*sqrt(2)/sgn(cos(d*x + c)))*tan(1/2*d* 
x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 
+ a)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(3/2),x)
 

Output:

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^4(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \tan \left (d x +c \right )^{4}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right )}{a^{2}} \] Input:

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*tan(c + d*x)**4)/(sec(c + d*x)**2 + 2 
*sec(c + d*x) + 1),x))/a**2