\(\int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx\) [297]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 21, antiderivative size = 179 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {\log (\cos (c+d x))}{a^2 d}+\frac {\left (a^2-b^2\right )^2 \left (5 a^2+b^2\right ) \log (a+b \sec (c+d x))}{a^2 b^6 d}-\frac {2 a \left (2 a^2-3 b^2\right ) \sec (c+d x)}{b^5 d}+\frac {3 \left (a^2-b^2\right ) \sec ^2(c+d x)}{2 b^4 d}-\frac {2 a \sec ^3(c+d x)}{3 b^3 d}+\frac {\sec ^4(c+d x)}{4 b^2 d}+\frac {\left (a^2-b^2\right )^3}{a b^6 d (a+b \sec (c+d x))} \] Output:

ln(cos(d*x+c))/a^2/d+(a^2-b^2)^2*(5*a^2+b^2)*ln(a+b*sec(d*x+c))/a^2/b^6/d- 
2*a*(2*a^2-3*b^2)*sec(d*x+c)/b^5/d+3/2*(a^2-b^2)*sec(d*x+c)^2/b^4/d-2/3*a* 
sec(d*x+c)^3/b^3/d+1/4*sec(d*x+c)^4/b^2/d+(a^2-b^2)^3/a/b^6/d/(a+b*sec(d*x 
+c))
 

Mathematica [A] (verified)

Time = 1.44 (sec) , antiderivative size = 163, normalized size of antiderivative = 0.91 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=-\frac {-\frac {b^6 \log (\cos (c+d x))}{a^2}-\frac {\left (a^2-b^2\right )^2 \left (5 a^2+b^2\right ) \log (a+b \sec (c+d x))}{a^2}+2 a b \left (2 a^2-3 b^2\right ) \sec (c+d x)-\frac {3}{2} (a-b) b^2 (a+b) \sec ^2(c+d x)+\frac {2}{3} a b^3 \sec ^3(c+d x)-\frac {1}{4} b^4 \sec ^4(c+d x)-\frac {\left (a^2-b^2\right )^3}{a (a+b \sec (c+d x))}}{b^6 d} \] Input:

Integrate[Tan[c + d*x]^7/(a + b*Sec[c + d*x])^2,x]
 

Output:

-((-((b^6*Log[Cos[c + d*x]])/a^2) - ((a^2 - b^2)^2*(5*a^2 + b^2)*Log[a + b 
*Sec[c + d*x]])/a^2 + 2*a*b*(2*a^2 - 3*b^2)*Sec[c + d*x] - (3*(a - b)*b^2* 
(a + b)*Sec[c + d*x]^2)/2 + (2*a*b^3*Sec[c + d*x]^3)/3 - (b^4*Sec[c + d*x] 
^4)/4 - (a^2 - b^2)^3/(a*(a + b*Sec[c + d*x])))/(b^6*d))
 

Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.92, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3042, 25, 4373, 522, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {\cot \left (c+d x+\frac {\pi }{2}\right )^7}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {\cot \left (\frac {1}{2} (2 c+\pi )+d x\right )^7}{\left (a+b \csc \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^2}dx\)

\(\Big \downarrow \) 4373

\(\displaystyle -\frac {\int \frac {\cos (c+d x) \left (b^2-b^2 \sec ^2(c+d x)\right )^3}{b (a+b \sec (c+d x))^2}d(b \sec (c+d x))}{b^6 d}\)

\(\Big \downarrow \) 522

\(\displaystyle -\frac {\int \left (\frac {\cos (c+d x) b^5}{a^2}-\sec ^3(c+d x) b^3+2 a \sec ^2(c+d x) b^2-3 \left (a^2-b^2\right ) \sec (c+d x) b+2 \left (2 a^3-3 a b^2\right )-\frac {\left (a^2-b^2\right )^2 \left (5 a^2+b^2\right )}{a^2 (a+b \sec (c+d x))}+\frac {\left (a^2-b^2\right )^3}{a (a+b \sec (c+d x))^2}\right )d(b \sec (c+d x))}{b^6 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\frac {b^6 \log (b \sec (c+d x))}{a^2}-\frac {3}{2} b^2 \left (a^2-b^2\right ) \sec ^2(c+d x)+2 a b \left (2 a^2-3 b^2\right ) \sec (c+d x)-\frac {\left (a^2-b^2\right )^3}{a (a+b \sec (c+d x))}-\frac {\left (a^2-b^2\right )^2 \left (5 a^2+b^2\right ) \log (a+b \sec (c+d x))}{a^2}+\frac {2}{3} a b^3 \sec ^3(c+d x)-\frac {1}{4} b^4 \sec ^4(c+d x)}{b^6 d}\)

Input:

Int[Tan[c + d*x]^7/(a + b*Sec[c + d*x])^2,x]
 

Output:

-(((b^6*Log[b*Sec[c + d*x]])/a^2 - ((a^2 - b^2)^2*(5*a^2 + b^2)*Log[a + b* 
Sec[c + d*x]])/a^2 + 2*a*b*(2*a^2 - 3*b^2)*Sec[c + d*x] - (3*b^2*(a^2 - b^ 
2)*Sec[c + d*x]^2)/2 + (2*a*b^3*Sec[c + d*x]^3)/3 - (b^4*Sec[c + d*x]^4)/4 
 - (a^2 - b^2)^3/(a*(a + b*Sec[c + d*x])))/(b^6*d))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 522
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_. 
), x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], 
x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4373
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_), x_Symbol] :> Simp[-(-1)^((m - 1)/2)/(d*b^(m - 1))   Subst[Int[(b^2 - x^ 
2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a, b, c, 
 d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 1.50 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.12

method result size
derivativedivides \(\frac {-\frac {a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}}{a^{2} b^{5} \left (b +a \cos \left (d x +c \right )\right )}+\frac {\left (5 a^{6}-9 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \ln \left (b +a \cos \left (d x +c \right )\right )}{b^{6} a^{2}}-\frac {-3 a^{2}+3 b^{2}}{2 b^{4} \cos \left (d x +c \right )^{2}}+\frac {\left (-5 a^{4}+9 a^{2} b^{2}-3 b^{4}\right ) \ln \left (\cos \left (d x +c \right )\right )}{b^{6}}+\frac {1}{4 b^{2} \cos \left (d x +c \right )^{4}}-\frac {2 a}{3 b^{3} \cos \left (d x +c \right )^{3}}-\frac {2 a \left (2 a^{2}-3 b^{2}\right )}{b^{5} \cos \left (d x +c \right )}}{d}\) \(200\)
default \(\frac {-\frac {a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}}{a^{2} b^{5} \left (b +a \cos \left (d x +c \right )\right )}+\frac {\left (5 a^{6}-9 a^{4} b^{2}+3 a^{2} b^{4}+b^{6}\right ) \ln \left (b +a \cos \left (d x +c \right )\right )}{b^{6} a^{2}}-\frac {-3 a^{2}+3 b^{2}}{2 b^{4} \cos \left (d x +c \right )^{2}}+\frac {\left (-5 a^{4}+9 a^{2} b^{2}-3 b^{4}\right ) \ln \left (\cos \left (d x +c \right )\right )}{b^{6}}+\frac {1}{4 b^{2} \cos \left (d x +c \right )^{4}}-\frac {2 a}{3 b^{3} \cos \left (d x +c \right )^{3}}-\frac {2 a \left (2 a^{2}-3 b^{2}\right )}{b^{5} \cos \left (d x +c \right )}}{d}\) \(200\)
risch \(-\frac {i x}{a^{2}}-\frac {2 i c}{d \,a^{2}}-\frac {2 \left (-182 a^{4} b^{2} {\mathrm e}^{5 i \left (d x +c \right )}+78 a^{2} b^{4} {\mathrm e}^{5 i \left (d x +c \right )}-118 a^{4} b^{2} {\mathrm e}^{3 i \left (d x +c \right )}-27 a^{3} b^{3} {\mathrm e}^{2 i \left (d x +c \right )}+54 a^{2} b^{4} {\mathrm e}^{3 i \left (d x +c \right )}-27 a^{3} b^{3} {\mathrm e}^{8 i \left (d x +c \right )}-71 a^{3} b^{3} {\mathrm e}^{4 i \left (d x +c \right )}-27 a^{4} b^{2} {\mathrm e}^{9 i \left (d x +c \right )}-118 a^{4} b^{2} {\mathrm e}^{7 i \left (d x +c \right )}+15 a^{5} b \,{\mathrm e}^{2 i \left (d x +c \right )}-71 a^{3} b^{3} {\mathrm e}^{6 i \left (d x +c \right )}+45 a^{5} b \,{\mathrm e}^{4 i \left (d x +c \right )}+54 a^{2} b^{4} {\mathrm e}^{7 i \left (d x +c \right )}-27 a^{4} b^{2} {\mathrm e}^{i \left (d x +c \right )}+9 a^{2} b^{4} {\mathrm e}^{i \left (d x +c \right )}+9 a^{2} b^{4} {\mathrm e}^{9 i \left (d x +c \right )}+45 a^{5} b \,{\mathrm e}^{6 i \left (d x +c \right )}+15 a^{5} b \,{\mathrm e}^{8 i \left (d x +c \right )}+90 a^{6} {\mathrm e}^{5 i \left (d x +c \right )}-12 b^{6} {\mathrm e}^{3 i \left (d x +c \right )}-18 b^{6} {\mathrm e}^{5 i \left (d x +c \right )}-3 b^{6} {\mathrm e}^{i \left (d x +c \right )}+60 a^{6} {\mathrm e}^{3 i \left (d x +c \right )}+15 a^{6} {\mathrm e}^{9 i \left (d x +c \right )}+15 a^{6} {\mathrm e}^{i \left (d x +c \right )}+60 a^{6} {\mathrm e}^{7 i \left (d x +c \right )}-3 b^{6} {\mathrm e}^{9 i \left (d x +c \right )}-12 b^{6} {\mathrm e}^{7 i \left (d x +c \right )}\right )}{3 d \,b^{5} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4} a^{2} \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}+\frac {5 a^{4} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\frac {2 b \,{\mathrm e}^{i \left (d x +c \right )}}{a}+1\right )}{b^{6} d}-\frac {9 a^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\frac {2 b \,{\mathrm e}^{i \left (d x +c \right )}}{a}+1\right )}{b^{4} d}+\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\frac {2 b \,{\mathrm e}^{i \left (d x +c \right )}}{a}+1\right )}{b^{2} d}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+\frac {2 b \,{\mathrm e}^{i \left (d x +c \right )}}{a}+1\right )}{a^{2} d}-\frac {5 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) a^{4}}{b^{6} d}+\frac {9 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) a^{2}}{b^{4} d}-\frac {3 \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{b^{2} d}\) \(720\)

Input:

int(tan(d*x+c)^7/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-(a^6-3*a^4*b^2+3*a^2*b^4-b^6)/a^2/b^5/(b+a*cos(d*x+c))+(5*a^6-9*a^4* 
b^2+3*a^2*b^4+b^6)/b^6/a^2*ln(b+a*cos(d*x+c))-1/2*(-3*a^2+3*b^2)/b^4/cos(d 
*x+c)^2+(-5*a^4+9*a^2*b^2-3*b^4)/b^6*ln(cos(d*x+c))+1/4/b^2/cos(d*x+c)^4-2 
/3/b^3*a/cos(d*x+c)^3-2*a*(2*a^2-3*b^2)/b^5/cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 312, normalized size of antiderivative = 1.74 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=-\frac {5 \, a^{3} b^{4} \cos \left (d x + c\right ) - 3 \, a^{2} b^{5} + 12 \, {\left (5 \, a^{6} b - 9 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} \cos \left (d x + c\right )^{4} + 6 \, {\left (5 \, a^{5} b^{2} - 9 \, a^{3} b^{4}\right )} \cos \left (d x + c\right )^{3} - 2 \, {\left (5 \, a^{4} b^{3} - 9 \, a^{2} b^{5}\right )} \cos \left (d x + c\right )^{2} - 12 \, {\left ({\left (5 \, a^{7} - 9 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \cos \left (d x + c\right )^{5} + {\left (5 \, a^{6} b - 9 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \cos \left (d x + c\right )^{4}\right )} \log \left (a \cos \left (d x + c\right ) + b\right ) + 12 \, {\left ({\left (5 \, a^{7} - 9 \, a^{5} b^{2} + 3 \, a^{3} b^{4}\right )} \cos \left (d x + c\right )^{5} + {\left (5 \, a^{6} b - 9 \, a^{4} b^{3} + 3 \, a^{2} b^{5}\right )} \cos \left (d x + c\right )^{4}\right )} \log \left (-\cos \left (d x + c\right )\right )}{12 \, {\left (a^{3} b^{6} d \cos \left (d x + c\right )^{5} + a^{2} b^{7} d \cos \left (d x + c\right )^{4}\right )}} \] Input:

integrate(tan(d*x+c)^7/(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 

Output:

-1/12*(5*a^3*b^4*cos(d*x + c) - 3*a^2*b^5 + 12*(5*a^6*b - 9*a^4*b^3 + 3*a^ 
2*b^5 - b^7)*cos(d*x + c)^4 + 6*(5*a^5*b^2 - 9*a^3*b^4)*cos(d*x + c)^3 - 2 
*(5*a^4*b^3 - 9*a^2*b^5)*cos(d*x + c)^2 - 12*((5*a^7 - 9*a^5*b^2 + 3*a^3*b 
^4 + a*b^6)*cos(d*x + c)^5 + (5*a^6*b - 9*a^4*b^3 + 3*a^2*b^5 + b^7)*cos(d 
*x + c)^4)*log(a*cos(d*x + c) + b) + 12*((5*a^7 - 9*a^5*b^2 + 3*a^3*b^4)*c 
os(d*x + c)^5 + (5*a^6*b - 9*a^4*b^3 + 3*a^2*b^5)*cos(d*x + c)^4)*log(-cos 
(d*x + c)))/(a^3*b^6*d*cos(d*x + c)^5 + a^2*b^7*d*cos(d*x + c)^4)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\int \frac {\tan ^{7}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(tan(d*x+c)**7/(a+b*sec(d*x+c))**2,x)
 

Output:

Integral(tan(c + d*x)**7/(a + b*sec(c + d*x))**2, x)
 

Maxima [A] (verification not implemented)

Time = 0.04 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.27 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=-\frac {\frac {5 \, a^{3} b^{3} \cos \left (d x + c\right ) - 3 \, a^{2} b^{4} + 12 \, {\left (5 \, a^{6} - 9 \, a^{4} b^{2} + 3 \, a^{2} b^{4} - b^{6}\right )} \cos \left (d x + c\right )^{4} + 6 \, {\left (5 \, a^{5} b - 9 \, a^{3} b^{3}\right )} \cos \left (d x + c\right )^{3} - 2 \, {\left (5 \, a^{4} b^{2} - 9 \, a^{2} b^{4}\right )} \cos \left (d x + c\right )^{2}}{a^{3} b^{5} \cos \left (d x + c\right )^{5} + a^{2} b^{6} \cos \left (d x + c\right )^{4}} + \frac {12 \, {\left (5 \, a^{4} - 9 \, a^{2} b^{2} + 3 \, b^{4}\right )} \log \left (\cos \left (d x + c\right )\right )}{b^{6}} - \frac {12 \, {\left (5 \, a^{6} - 9 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} \log \left (a \cos \left (d x + c\right ) + b\right )}{a^{2} b^{6}}}{12 \, d} \] Input:

integrate(tan(d*x+c)^7/(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 

Output:

-1/12*((5*a^3*b^3*cos(d*x + c) - 3*a^2*b^4 + 12*(5*a^6 - 9*a^4*b^2 + 3*a^2 
*b^4 - b^6)*cos(d*x + c)^4 + 6*(5*a^5*b - 9*a^3*b^3)*cos(d*x + c)^3 - 2*(5 
*a^4*b^2 - 9*a^2*b^4)*cos(d*x + c)^2)/(a^3*b^5*cos(d*x + c)^5 + a^2*b^6*co 
s(d*x + c)^4) + 12*(5*a^4 - 9*a^2*b^2 + 3*b^4)*log(cos(d*x + c))/b^6 - 12* 
(5*a^6 - 9*a^4*b^2 + 3*a^2*b^4 + b^6)*log(a*cos(d*x + c) + b)/(a^2*b^6))/d
 

Giac [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.27 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=-\frac {{\left (5 \, a^{4} - 9 \, a^{2} b^{2} + 3 \, b^{4}\right )} \log \left ({\left | \cos \left (d x + c\right ) \right |}\right )}{b^{6} d} + \frac {{\left (5 \, a^{6} - 9 \, a^{4} b^{2} + 3 \, a^{2} b^{4} + b^{6}\right )} \log \left ({\left | a \cos \left (d x + c\right ) + b \right |}\right )}{a^{2} b^{6} d} - \frac {5 \, a^{2} b^{4} \cos \left (d x + c\right ) - 3 \, a b^{5} + 6 \, {\left (5 \, a^{4} b^{2} - 9 \, a^{2} b^{4}\right )} \cos \left (d x + c\right )^{3} + \frac {12 \, {\left (5 \, a^{6} b - 9 \, a^{4} b^{3} + 3 \, a^{2} b^{5} - b^{7}\right )} \cos \left (d x + c\right )^{4}}{a} - 2 \, {\left (5 \, a^{3} b^{3} - 9 \, a b^{5}\right )} \cos \left (d x + c\right )^{2}}{12 \, {\left (a \cos \left (d x + c\right ) + b\right )} a b^{6} d \cos \left (d x + c\right )^{4}} \] Input:

integrate(tan(d*x+c)^7/(a+b*sec(d*x+c))^2,x, algorithm="giac")
 

Output:

-(5*a^4 - 9*a^2*b^2 + 3*b^4)*log(abs(cos(d*x + c)))/(b^6*d) + (5*a^6 - 9*a 
^4*b^2 + 3*a^2*b^4 + b^6)*log(abs(a*cos(d*x + c) + b))/(a^2*b^6*d) - 1/12* 
(5*a^2*b^4*cos(d*x + c) - 3*a*b^5 + 6*(5*a^4*b^2 - 9*a^2*b^4)*cos(d*x + c) 
^3 + 12*(5*a^6*b - 9*a^4*b^3 + 3*a^2*b^5 - b^7)*cos(d*x + c)^4/a - 2*(5*a^ 
3*b^3 - 9*a*b^5)*cos(d*x + c)^2)/((a*cos(d*x + c) + b)*a*b^6*d*cos(d*x + c 
)^4)
 

Mupad [B] (verification not implemented)

Time = 11.82 (sec) , antiderivative size = 505, normalized size of antiderivative = 2.82 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (20\,a^5+5\,a^4\,b-31\,a^3\,b^2-4\,a^2\,b^3+8\,a\,b^4+4\,b^5\right )}{a\,b^5}-\frac {2\,\left (15\,a^5+15\,a^4\,b-22\,a^3\,b^2-22\,a^2\,b^3+3\,a\,b^4+3\,b^5\right )}{3\,a\,b^5}+\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (60\,a^5+45\,a^4\,b-83\,a^3\,b^2-66\,a^2\,b^3+6\,a\,b^4+12\,b^5\right )}{3\,a\,b^5}-\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (90\,a^5+45\,a^4\,b-127\,a^3\,b^2-56\,a^2\,b^3+6\,a\,b^4+18\,b^5\right )}{3\,a\,b^5}+\frac {2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8\,\left (a-b\right )\,\left (-5\,a^4-5\,a^3\,b+4\,a^2\,b^2+4\,a\,b^3+b^4\right )}{a\,b^5}}{d\,\left (\left (b-a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+\left (5\,a-3\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+\left (2\,b-10\,a\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\left (10\,a+2\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\left (-5\,a-3\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a+b\right )}-\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a^2\,d}-\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )\,\left (5\,a^4-9\,a^2\,b^2+3\,b^4\right )}{b^6\,d}+\frac {\ln \left (a+b-a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\right )\,{\left (a^2-b^2\right )}^2\,\left (5\,a^2+b^2\right )}{a^2\,b^6\,d} \] Input:

int(tan(c + d*x)^7/(a + b/cos(c + d*x))^2,x)
 

Output:

((2*tan(c/2 + (d*x)/2)^6*(8*a*b^4 + 5*a^4*b + 20*a^5 + 4*b^5 - 4*a^2*b^3 - 
 31*a^3*b^2))/(a*b^5) - (2*(3*a*b^4 + 15*a^4*b + 15*a^5 + 3*b^5 - 22*a^2*b 
^3 - 22*a^3*b^2))/(3*a*b^5) + (2*tan(c/2 + (d*x)/2)^2*(6*a*b^4 + 45*a^4*b 
+ 60*a^5 + 12*b^5 - 66*a^2*b^3 - 83*a^3*b^2))/(3*a*b^5) - (2*tan(c/2 + (d* 
x)/2)^4*(6*a*b^4 + 45*a^4*b + 90*a^5 + 18*b^5 - 56*a^2*b^3 - 127*a^3*b^2)) 
/(3*a*b^5) + (2*tan(c/2 + (d*x)/2)^8*(a - b)*(4*a*b^3 - 5*a^3*b - 5*a^4 + 
b^4 + 4*a^2*b^2))/(a*b^5))/(d*(a + b - tan(c/2 + (d*x)/2)^10*(a - b) - tan 
(c/2 + (d*x)/2)^2*(5*a + 3*b) + tan(c/2 + (d*x)/2)^4*(10*a + 2*b) + tan(c/ 
2 + (d*x)/2)^8*(5*a - 3*b) - tan(c/2 + (d*x)/2)^6*(10*a - 2*b))) - log(tan 
(c/2 + (d*x)/2)^2 + 1)/(a^2*d) - (log(tan(c/2 + (d*x)/2)^2 - 1)*(5*a^4 + 3 
*b^4 - 9*a^2*b^2))/(b^6*d) + (log(a + b - a*tan(c/2 + (d*x)/2)^2 + b*tan(c 
/2 + (d*x)/2)^2)*(a^2 - b^2)^2*(5*a^2 + b^2))/(a^2*b^6*d)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 3001, normalized size of antiderivative = 16.77 \[ \int \frac {\tan ^7(c+d x)}{(a+b \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

int(tan(d*x+c)^7/(a+b*sec(d*x+c))^2,x)
 

Output:

( - 12*cos(c + d*x)*log(tan((c + d*x)/2)**2 + 1)*sin(c + d*x)**4*a*b**6 + 
24*cos(c + d*x)*log(tan((c + d*x)/2)**2 + 1)*sin(c + d*x)**2*a*b**6 - 12*c 
os(c + d*x)*log(tan((c + d*x)/2)**2 + 1)*a*b**6 - 60*cos(c + d*x)*log(tan( 
(c + d*x)/2) - 1)*sin(c + d*x)**4*a**7 + 108*cos(c + d*x)*log(tan((c + d*x 
)/2) - 1)*sin(c + d*x)**4*a**5*b**2 - 36*cos(c + d*x)*log(tan((c + d*x)/2) 
 - 1)*sin(c + d*x)**4*a**3*b**4 + 120*cos(c + d*x)*log(tan((c + d*x)/2) - 
1)*sin(c + d*x)**2*a**7 - 216*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c 
 + d*x)**2*a**5*b**2 + 72*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d 
*x)**2*a**3*b**4 - 60*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a**7 + 108*co 
s(c + d*x)*log(tan((c + d*x)/2) - 1)*a**5*b**2 - 36*cos(c + d*x)*log(tan(( 
c + d*x)/2) - 1)*a**3*b**4 - 60*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin 
(c + d*x)**4*a**7 + 108*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x 
)**4*a**5*b**2 - 36*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**4 
*a**3*b**4 + 120*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a* 
*7 - 216*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a**5*b**2 
+ 72*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*a**3*b**4 - 60 
*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**7 + 108*cos(c + d*x)*log(tan((c 
 + d*x)/2) + 1)*a**5*b**2 - 36*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*a**3 
*b**4 + 60*cos(c + d*x)*log(tan((c + d*x)/2)**2*a - tan((c + d*x)/2)**2*b 
- a - b)*sin(c + d*x)**4*a**7 - 108*cos(c + d*x)*log(tan((c + d*x)/2)**...