\(\int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx\) [320]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 344 \[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=-\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b^2 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{d}+\frac {2 \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{3 d} \] Output:

-2/3*a*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b) 
^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+ 
c))/(a-b))^(1/2)/b^2/d-2/3*(a+b)^(1/2)*(a+2*b)*cot(d*x+c)*EllipticF((a+b*s 
ec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b)) 
^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b/d+2*(a+b)^(1/2)*cot(d*x+c)*Ellipt 
icPi((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1 
-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/d+2/3*(a+b*sec(d 
*x+c))^(1/2)*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 10.77 (sec) , antiderivative size = 376, normalized size of antiderivative = 1.09 \[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=-\frac {2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \sec (c+d x)} \left (2 a (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-4 (2 a-b) b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+12 a b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 b d (b+a \cos (c+d x))}+\frac {\sqrt {a+b \sec (c+d x)} \left (\frac {2 a \sin (c+d x)}{3 b}+\frac {2}{3} \tan (c+d x)\right )}{d} \] Input:

Integrate[Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x]^2,x]
 

Output:

(-2*Cos[(c + d*x)/2]^2*Sqrt[a + b*Sec[c + d*x]]*(2*a*(a + b)*Sqrt[Cos[c + 
d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d 
*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 4*(2*a - b)* 
b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b) 
*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] 
 + 12*a*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/ 
((a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a 
- b)/(a + b)] + a*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan 
[(c + d*x)/2]))/(3*b*d*(b + a*Cos[c + d*x])) + (Sqrt[a + b*Sec[c + d*x]]*( 
(2*a*Sin[c + d*x])/(3*b) + (2*Tan[c + d*x])/3))/d
 

Rubi [A] (verified)

Time = 1.31 (sec) , antiderivative size = 345, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 4382, 3042, 4545, 27, 3042, 4546, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^2(c+d x) \sqrt {a+b \sec (c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cot \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4382

\(\displaystyle \int \left (\sec ^2(c+d x)-1\right ) \sqrt {a+b \sec (c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (\csc \left (c+d x+\frac {\pi }{2}\right )^2-1\right ) \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4545

\(\displaystyle \frac {2}{3} \int -\frac {-a \sec ^2(c+d x)+2 b \sec (c+d x)+3 a}{2 \sqrt {a+b \sec (c+d x)}}dx+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}-\frac {1}{3} \int \frac {-a \sec ^2(c+d x)+2 b \sec (c+d x)+3 a}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}-\frac {1}{3} \int \frac {-a \csc \left (c+d x+\frac {\pi }{2}\right )^2+2 b \csc \left (c+d x+\frac {\pi }{2}\right )+3 a}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4546

\(\displaystyle \frac {1}{3} \left (a \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {3 a+(a+2 b) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {3 a+(a+2 b) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {1}{3} \left (a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-(a+2 b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (-3 a \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-(a+2 b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {1}{3} \left (-(a+2 b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {1}{3} \left (a \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}+\frac {6 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {1}{3} \left (-\frac {2 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} (a+2 b) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}+\frac {6 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{d}\right )+\frac {2 \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 d}\)

Input:

Int[Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x]^2,x]
 

Output:

((-2*a*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c 
+ d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b) 
]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*(a + 2 
*b)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], ( 
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
+ d*x]))/(a - b))])/(b*d) + (6*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b) 
/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b 
*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/d)/ 
3 + (2*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4382
Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), 
x_Symbol] :> Int[(-1 + Csc[c + d*x]^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[ 
{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4545
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^ 
m/(f*(m + 1))), x] + Simp[1/(m + 1)   Int[(a + b*Csc[e + f*x])^(m - 1)*Simp 
[a*A*(m + 1) + (A*b*(m + 1) + b*C*m)*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x 
], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 
 0]
 

rule 4546
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A + (B - C 
)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C   Int[Csc[e + f*x]*(( 
1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A 
, B, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 10.79 (sec) , antiderivative size = 595, normalized size of antiderivative = 1.73

method result size
default \(\frac {2 \sqrt {a +b \sec \left (d x +c \right )}\, \left (6 \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a^{2} \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+4 \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a b \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+2 \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b^{2} \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+a^{2} \cos \left (d x +c \right ) \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (\cos \left (d x +c \right )+2\right ) a b +b^{2} \left (\sin \left (d x +c \right )+\tan \left (d x +c \right )\right )\right )}{3 d b \left (a \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(595\)

Input:

int((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x,method=_RETURNVERBOSE)
 

Output:

2/3/d/b*(a+b*sec(d*x+c))^(1/2)/(a*cos(d*x+c)^2+a*cos(d*x+c)+b*cos(d*x+c)+b 
)*(6*(cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a 
+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticPi(-csc(d*x+c)+cot( 
d*x+c),-1,((a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*E 
llipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d 
*x+c)+1)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+co 
s(d*x+c)))^(1/2)*a*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2)) 
+4*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+ 
b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b*EllipticF(-csc(d*x+c)+cot(d* 
x+c),((a-b)/(a+b))^(1/2))+2*(cos(d*x+c)^2+2*cos(d*x+c)+1)*(cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2*Elli 
pticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+a^2*cos(d*x+c)*sin(d*x+c 
)+sin(d*x+c)*(cos(d*x+c)+2)*a*b+b^2*(sin(d*x+c)+tan(d*x+c)))
                                                                                    
                                                                                    
 

Fricas [F]

\[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="fricas")
 

Output:

integral(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)
 

Sympy [F]

\[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int \sqrt {a + b \sec {\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )}\, dx \] Input:

integrate((a+b*sec(d*x+c))**(1/2)*tan(d*x+c)**2,x)
 

Output:

Integral(sqrt(a + b*sec(c + d*x))*tan(c + d*x)**2, x)
 

Maxima [F]

\[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="maxima")
 

Output:

integrate(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)
 

Giac [F]

\[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int { \sqrt {b \sec \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int {\mathrm {tan}\left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(tan(c + d*x)^2*(a + b/cos(c + d*x))^(1/2),x)
 

Output:

int(tan(c + d*x)^2*(a + b/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+b \sec (c+d x)} \tan ^2(c+d x) \, dx=\int \sqrt {\sec \left (d x +c \right ) b +a}\, \tan \left (d x +c \right )^{2}d x \] Input:

int((a+b*sec(d*x+c))^(1/2)*tan(d*x+c)^2,x)
 

Output:

int(sqrt(sec(c + d*x)*b + a)*tan(c + d*x)**2,x)