\(\int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\) [329]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 310 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a d} \] Output:

-2*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/ 
2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/ 
(a-b))^(1/2)/b^2/d-2*(a+b)^(1/2)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/ 
2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+ 
sec(d*x+c))/(a-b))^(1/2)/b/d+2*(a+b)^(1/2)*cot(d*x+c)*EllipticPi((a+b*sec( 
d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/( 
a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a/d
 

Mathematica [A] (warning: unable to verify)

Time = 10.97 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.23 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {-\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x) \sec ^4\left (\frac {1}{2} (c+d x)\right )} \sqrt {\sec (c+d x)} \sqrt {1+\sec (c+d x)} \left (2 (a+b) \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-4 b \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+4 b \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )-a \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )+2 b \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \tan \left (\frac {1}{2} (c+d x)\right )\right )+2 (b+a \cos (c+d x)) \tan (c+d x)}{b d \sqrt {a+b \sec (c+d x)}} \] Input:

Integrate[Tan[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(-(Cos[(c + d*x)/2]^2*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^4]*Sqrt[Sec[c + d 
*x]]*Sqrt[1 + Sec[c + d*x]]*(2*(a + b)*Sqrt[(b + a*Cos[c + d*x])/((a + b)* 
(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] 
- 4*b*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[Ar 
cSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 4*b*Sqrt[(b + a*Cos[c + d*x])/( 
(a + b)*(1 + Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - 
 b)/(a + b)] + a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Si 
n[(3*(c + d*x))/2] - a*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x) 
/2] + 2*b*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Tan[(c + d*x)/2])) + 2*(b 
+ a*Cos[c + d*x])*Tan[c + d*x])/(b*d*Sqrt[a + b*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 0.98 (sec) , antiderivative size = 310, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4382, 3042, 4547, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4382

\(\displaystyle \int \frac {\sec ^2(c+d x)-1}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2-1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4547

\(\displaystyle \int \frac {-\sec (c+d x)-1}{\sqrt {a+b \sec (c+d x)}}dx+\int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-\csc \left (c+d x+\frac {\pi }{2}\right )-1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4409

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-\int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4271

\(\displaystyle -\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\)

\(\Big \downarrow \) 4492

\(\displaystyle -\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}\)

Input:

Int[Tan[c + d*x]^2/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

(-2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d 
*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*S 
qrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a + b]*Cot[c + d 
*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b 
)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - 
 b))])/(b*d) + (2*Sqrt[a + b]*Cot[c + d*x]*EllipticPi[(a + b)/a, ArcSin[Sq 
rt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + 
 d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(a*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4382
Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), 
x_Symbol] :> Int[(-1 + Csc[c + d*x]^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[ 
{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4547
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]* 
(b_.) + (a_)], x_Symbol] :> Int[(A - C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x 
]], x] + Simp[C   Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f 
*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 
Maple [A] (verified)

Time = 8.28 (sec) , antiderivative size = 467, normalized size of antiderivative = 1.51

method result size
default \(\frac {\left (1+\cos \left (d x +c \right )\right )^{2} \left (\left (\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) a +\left (-\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right ) b +4 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticF}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) a -2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right ) b -4 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right ) b \right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )}{2 d b \left (b +a \cos \left (d x +c \right )\right )}\) \(467\)

Input:

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/d/b/(b+a*cos(d*x+c))*(1+cos(d*x+c))^2*(((1-cos(d*x+c))^3*csc(d*x+c)^3- 
csc(d*x+c)+cot(d*x+c))*a+(-(1-cos(d*x+c))^3*csc(d*x+c)^3-csc(d*x+c)+cot(d* 
x+c))*b+4*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+c 
os(d*x+c)))^(1/2)*EllipticF(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*b- 
2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c 
)))^(1/2)*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*a-2*(cos(d 
*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2 
)*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))*b-4*(cos(d*x+c)/(1 
+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*Ellipt 
icPi(-csc(d*x+c)+cot(d*x+c),-1,((a-b)/(a+b))^(1/2))*b)*((1-cos(d*x+c))^2*c 
sc(d*x+c)^2-1)*(a+b*sec(d*x+c))^(1/2)*sec(d*x+c)
 

Fricas [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

integral(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)
 

Sympy [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\tan ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate(tan(d*x+c)**2/(a+b*sec(d*x+c))**(1/2),x)
 

Output:

Integral(tan(c + d*x)**2/sqrt(a + b*sec(c + d*x)), x)
 

Maxima [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

integrate(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)
 

Giac [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

integrate(tan(d*x + c)^2/sqrt(b*sec(d*x + c) + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(1/2),x)
 

Output:

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \tan \left (d x +c \right )^{2}}{\sec \left (d x +c \right ) b +a}d x \] Input:

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x)*b + a)*tan(c + d*x)**2)/(sec(c + d*x)*b + a),x)