\(\int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\) [338]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 344 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b^2 d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a b d}+\frac {2 \sqrt {a+b} \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{a^2 d}+\frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}} \] Output:

2*(a-b)*(a+b)^(1/2)*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2 
),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/( 
a-b))^(1/2)/a/b^2/d+2*(a+b)^(1/2)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1 
/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1 
+sec(d*x+c))/(a-b))^(1/2)/a/b/d+2*(a+b)^(1/2)*cot(d*x+c)*EllipticPi((a+b*s 
ec(d*x+c))^(1/2)/(a+b)^(1/2),(a+b)/a,((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c) 
)/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/a^2/d+2*tan(d*x+c)/a/d/(a+b 
*sec(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 10.63 (sec) , antiderivative size = 329, normalized size of antiderivative = 0.96 \[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {(b+a \cos (c+d x))^2 \sec ^2(c+d x) \left (-\frac {2 \sin (c+d x)}{a b}+\frac {2 \sin (c+d x)}{a (b+a \cos (c+d x))}\right )}{d (a+b \sec (c+d x))^{3/2}}+\frac {4 \sqrt {\frac {\cos (c+d x)}{(1+\cos (c+d x))^2}} (b+a \cos (c+d x)) \sqrt {\sec (c+d x)} \left (\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)\right )^{3/2} \left ((a+b) E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-2 b \operatorname {EllipticPi}\left (-1,\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+(b+a \cos (c+d x)) \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a b d (a+b \sec (c+d x))^{3/2}} \] Input:

Integrate[Tan[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]
 

Output:

((b + a*Cos[c + d*x])^2*Sec[c + d*x]^2*((-2*Sin[c + d*x])/(a*b) + (2*Sin[c 
 + d*x])/(a*(b + a*Cos[c + d*x]))))/(d*(a + b*Sec[c + d*x])^(3/2)) + (4*Sq 
rt[Cos[c + d*x]/(1 + Cos[c + d*x])^2]*(b + a*Cos[c + d*x])*Sqrt[Sec[c + d* 
x]]*(Cos[(c + d*x)/2]^2*Sec[c + d*x])^(3/2)*((a + b)*EllipticE[ArcSin[Tan[ 
(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2 
]^2)/(a + b)] - 2*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + 
b)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + (b + a*Cos[c 
 + d*x])*Sqrt[Cos[c + d*x]*Sec[(c + d*x)/2]^2]*Tan[(c + d*x)/2]))/(a*b*d*( 
a + b*Sec[c + d*x])^(3/2))
 

Rubi [A] (verified)

Time = 1.35 (sec) , antiderivative size = 382, normalized size of antiderivative = 1.11, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.565, Rules used = {3042, 4382, 3042, 4549, 27, 3042, 4547, 3042, 4409, 3042, 4271, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^2}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4382

\(\displaystyle \int \frac {\sec ^2(c+d x)-1}{(a+b \sec (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2-1}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4549

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {2 \int \frac {a^2-b^2+\left (a^2-b^2\right ) \sec ^2(c+d x)}{2 \sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {a^2-b^2+\left (a^2-b^2\right ) \sec ^2(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\int \frac {a^2-b^2+\left (a^2-b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4547

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2-b^2\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx+\int \frac {a^2-b^2-\left (a^2-b^2\right ) \sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {a^2-b^2+\left (b^2-a^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4409

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \sec (c+d x)}}dx-\left (a^2-b^2\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4271

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {-\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {\left (a^2-b^2\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {2 \tan (c+d x)}{a d \sqrt {a+b \sec (c+d x)}}-\frac {-\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}-\frac {2 \sqrt {a+b} \left (a^2-b^2\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{a},\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}\)

Input:

Int[Tan[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]
 

Output:

-(((-2*(a - b)*Sqrt[a + b]*(a^2 - b^2)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[ 
a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d* 
x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - (2*Sqrt[a 
 + b]*(a^2 - b^2)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/S 
qrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-( 
(b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) - (2*Sqrt[a + b]*(a^2 - b^2)*Cot[c 
 + d*x]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]] 
, (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec 
[c + d*x]))/(a - b))])/(a*d))/(a*(a^2 - b^2))) + (2*Tan[c + d*x])/(a*d*Sqr 
t[a + b*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4271
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a 
 + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b) 
*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b*Csc[ 
c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && 
NeQ[a^2 - b^2, 0]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4382
Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), 
x_Symbol] :> Int[(-1 + Csc[c + d*x]^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[ 
{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
 

rule 4409
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c   Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + 
Simp[d   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, 
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4547
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]* 
(b_.) + (a_)], x_Symbol] :> Int[(A - C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x 
]], x] + Simp[C   Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f 
*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
 

rule 4549
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[ 
e + f*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - 
 b^2))   Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b* 
(A + C)*(m + 1)*Csc[e + f*x] + (A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], 
x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m 
] && LtQ[m, -1]
 
Maple [A] (verified)

Time = 8.26 (sec) , antiderivative size = 375, normalized size of antiderivative = 1.09

method result size
default \(-\frac {2 \left (\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b \operatorname {EllipticPi}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), -1, \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, a \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, b \operatorname {EllipticE}\left (-\csc \left (d x +c \right )+\cot \left (d x +c \right ), \sqrt {\frac {a -b}{a +b}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) a -\sin \left (d x +c \right ) \cos \left (d x +c \right ) b \right ) \sqrt {a +b \sec \left (d x +c \right )}}{d b a \left (a \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(375\)

Input:

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 

Output:

-2/d/b/a*((-2*cos(d*x+c)^2-4*cos(d*x+c)-2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+co 
s(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*b*EllipticPi(-csc(d*x+c 
)+cot(d*x+c),-1,((a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*(1/(a+b 
)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2) 
*a*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2))+(cos(d*x+c)^2+2*c 
os(d*x+c)+1)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)/( 
1+cos(d*x+c)))^(1/2)*b*EllipticE(-csc(d*x+c)+cot(d*x+c),((a-b)/(a+b))^(1/2 
))+sin(d*x+c)*cos(d*x+c)*a-sin(d*x+c)*cos(d*x+c)*b)*(a+b*sec(d*x+c))^(1/2) 
/(a*cos(d*x+c)^2+a*cos(d*x+c)+b*cos(d*x+c)+b)
                                                                                    
                                                                                    
 

Fricas [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*sec(d*x + c) + a)*tan(d*x + c)^2/(b^2*sec(d*x + c)^2 + 2*a 
*b*sec(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\tan ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(tan(d*x+c)**2/(a+b*sec(d*x+c))**(3/2),x)
 

Output:

Integral(tan(c + d*x)**2/(a + b*sec(c + d*x))**(3/2), x)
 

Maxima [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")
 

Output:

integrate(tan(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)
 

Giac [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")
 

Output:

integrate(tan(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^2}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(3/2),x)
 

Output:

int(tan(c + d*x)^2/(a + b/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \tan \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2} b^{2}+2 \sec \left (d x +c \right ) a b +a^{2}}d x \] Input:

int(tan(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x)*b + a)*tan(c + d*x)**2)/(sec(c + d*x)**2*b**2 + 2*s 
ec(c + d*x)*a*b + a**2),x)