\(\int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx\) [236]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 78 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {c-d} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {c-d} f} \] Output:

2^(1/2)*arctan(1/2*a^(1/2)*(c-d)^(1/2)*tan(f*x+e)*2^(1/2)/(a+a*sec(f*x+e)) 
^(1/2)/(c+d*sec(f*x+e))^(1/2))/a^(1/2)/(c-d)^(1/2)/f
 

Mathematica [A] (verified)

Time = 0.70 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.37 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {c-d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {d+c \cos (e+f x)}}\right ) \cos \left (\frac {1}{2} (e+f x)\right ) \sqrt {d+c \cos (e+f x)} \sec (e+f x)}{\sqrt {c-d} f \sqrt {a (1+\sec (e+f x))} \sqrt {c+d \sec (e+f x)}} \] Input:

Integrate[Sec[e + f*x]/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*Sec[e + f*x]]) 
,x]
 

Output:

(2*ArcTan[(Sqrt[c - d]*Sin[(e + f*x)/2])/Sqrt[d + c*Cos[e + f*x]]]*Cos[(e 
+ f*x)/2]*Sqrt[d + c*Cos[e + f*x]]*Sec[e + f*x])/(Sqrt[c - d]*f*Sqrt[a*(1 
+ Sec[e + f*x])]*Sqrt[c + d*Sec[e + f*x]])
 

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {3042, 4471, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a} \sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4471

\(\displaystyle -\frac {2 \int \frac {1}{\frac {a (c-d) \tan ^2(e+f x)}{(\sec (e+f x) a+a) (c+d \sec (e+f x))}+2}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a} \sqrt {c+d \sec (e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {c-d} \tan (e+f x)}{\sqrt {2} \sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} f \sqrt {c-d}}\)

Input:

Int[Sec[e + f*x]/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*Sec[e + f*x]]),x]
 

Output:

(Sqrt[2]*ArcTan[(Sqrt[a]*Sqrt[c - d]*Tan[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sec 
[e + f*x]]*Sqrt[c + d*Sec[e + f*x]])])/(Sqrt[a]*Sqrt[c - d]*f)
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4471
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqr 
t[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)]), x_Symbol] :> Simp[-2*(a/(b*f)) 
Subst[Int[1/(2 + (a*c - b*d)*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + 
f*x]]*Sqrt[c + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(134\) vs. \(2(63)=126\).

Time = 0.74 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.73

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (f x +e \right )\right )}\, \left (\left (-\cos \left (f x +e \right )+1\right )^{2} \csc \left (f x +e \right )^{2}-1\right ) \sqrt {c +d \sec \left (f x +e \right )}\, \ln \left (\sqrt {c -d}\, \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )+\sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}\right )}{f a \sqrt {c -d}\, \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}}\) \(135\)

Input:

int(sec(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/f/a/(c-d)^(1/2)*(a*(1+sec(f*x+e)))^(1/2)*((-cos(f*x+e)+1)^2*csc(f*x+e)^2 
-1)*(c+d*sec(f*x+e))^(1/2)/(-2*(d+c*cos(f*x+e))/(cos(f*x+e)+1))^(1/2)*ln(( 
c-d)^(1/2)*(-cot(f*x+e)+csc(f*x+e))+(-2*(d+c*cos(f*x+e))/(cos(f*x+e)+1))^( 
1/2))
 

Fricas [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 246, normalized size of antiderivative = 3.15 \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\left [\frac {\sqrt {2} \sqrt {-\frac {1}{a c - a d}} \log \left (-\frac {2 \, \sqrt {2} {\left (c - d\right )} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) + d}{\cos \left (f x + e\right )}} \sqrt {-\frac {1}{a c - a d}} \cos \left (f x + e\right ) \sin \left (f x + e\right ) - {\left (3 \, c - d\right )} \cos \left (f x + e\right )^{2} - 2 \, {\left (c + d\right )} \cos \left (f x + e\right ) + c - 3 \, d}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right )}{2 \, f}, -\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (f x + e\right ) + a}{\cos \left (f x + e\right )}} \sqrt {\frac {c \cos \left (f x + e\right ) + d}{\cos \left (f x + e\right )}} \cos \left (f x + e\right )}{\sqrt {a c - a d} \sin \left (f x + e\right )}\right )}{\sqrt {a c - a d} f}\right ] \] Input:

integrate(sec(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algo 
rithm="fricas")
 

Output:

[1/2*sqrt(2)*sqrt(-1/(a*c - a*d))*log(-(2*sqrt(2)*(c - d)*sqrt((a*cos(f*x 
+ e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f*x + e))*sqrt(-1/(a 
*c - a*d))*cos(f*x + e)*sin(f*x + e) - (3*c - d)*cos(f*x + e)^2 - 2*(c + d 
)*cos(f*x + e) + c - 3*d)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1))/f, -sqrt( 
2)*arctan(sqrt(2)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x 
+ e) + d)/cos(f*x + e))*cos(f*x + e)/(sqrt(a*c - a*d)*sin(f*x + e)))/(sqrt 
(a*c - a*d)*f)]
 

Sympy [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int \frac {\sec {\left (e + f x \right )}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \sqrt {c + d \sec {\left (e + f x \right )}}}\, dx \] Input:

integrate(sec(f*x+e)/(a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e))**(1/2),x)
 

Output:

Integral(sec(e + f*x)/(sqrt(a*(sec(e + f*x) + 1))*sqrt(c + d*sec(e + f*x)) 
), x)
 

Maxima [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )}{\sqrt {a \sec \left (f x + e\right ) + a} \sqrt {d \sec \left (f x + e\right ) + c}} \,d x } \] Input:

integrate(sec(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate(sec(f*x + e)/(sqrt(a*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c)) 
, x)
 

Giac [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )}{\sqrt {a \sec \left (f x + e\right ) + a} \sqrt {d \sec \left (f x + e\right ) + c}} \,d x } \] Input:

integrate(sec(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, algo 
rithm="giac")
 

Output:

integrate(sec(f*x + e)/(sqrt(a*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int \frac {1}{\cos \left (e+f\,x\right )\,\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,\sqrt {c+\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \] Input:

int(1/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))^(1/2)) 
,x)
 

Output:

int(1/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))^(1/2)) 
, x)
 

Reduce [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (f x +e \right ) d +c}\, \sqrt {\sec \left (f x +e \right )+1}\, \sec \left (f x +e \right )}{\sec \left (f x +e \right )^{2} d +\sec \left (f x +e \right ) c +\sec \left (f x +e \right ) d +c}d x \right )}{a} \] Input:

int(sec(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(e + f*x)*d + c)*sqrt(sec(e + f*x) + 1)*sec(e + f*x) 
)/(sec(e + f*x)**2*d + sec(e + f*x)*c + sec(e + f*x)*d + c),x))/a