\(\int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx\) [55]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 32, antiderivative size = 131 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=-\frac {c^3 \text {arctanh}(\sin (e+f x))}{a^3 f}+\frac {2 c^3 \tan (e+f x)}{f \left (a^3+a^3 \sec (e+f x)\right )}+\frac {2 c (c-c \sec (e+f x))^2 \tan (e+f x)}{5 f (a+a \sec (e+f x))^3}-\frac {2 \left (c^3-c^3 \sec (e+f x)\right ) \tan (e+f x)}{3 a f (a+a \sec (e+f x))^2} \] Output:

-c^3*arctanh(sin(f*x+e))/a^3/f+2*c^3*tan(f*x+e)/f/(a^3+a^3*sec(f*x+e))+2/5 
*c*(c-c*sec(f*x+e))^2*tan(f*x+e)/f/(a+a*sec(f*x+e))^3-2/3*(c^3-c^3*sec(f*x 
+e))*tan(f*x+e)/a/f/(a+a*sec(f*x+e))^2
 

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.06 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=-\frac {c^3 \left (-\frac {\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )}{f}+\frac {\log \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )}{f}-\frac {26 \tan \left (\frac {1}{2} (e+f x)\right )}{15 f}+\frac {2 \sec ^2\left (\frac {1}{2} (e+f x)\right ) \tan \left (\frac {1}{2} (e+f x)\right )}{15 f}-\frac {2 \sec ^4\left (\frac {1}{2} (e+f x)\right ) \tan \left (\frac {1}{2} (e+f x)\right )}{5 f}\right )}{a^3} \] Input:

Integrate[(Sec[e + f*x]*(c - c*Sec[e + f*x])^3)/(a + a*Sec[e + f*x])^3,x]
 

Output:

-((c^3*(-(Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]/f) + Log[Cos[(e + f*x)/ 
2] + Sin[(e + f*x)/2]]/f - (26*Tan[(e + f*x)/2])/(15*f) + (2*Sec[(e + f*x) 
/2]^2*Tan[(e + f*x)/2])/(15*f) - (2*Sec[(e + f*x)/2]^4*Tan[(e + f*x)/2])/( 
5*f)))/a^3)
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.02, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3042, 4445, 3042, 4445, 3042, 4445, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a \sec (e+f x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^3}{\left (a \csc \left (e+f x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 4445

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \int \frac {\sec (e+f x) (c-c \sec (e+f x))^2}{(\sec (e+f x) a+a)^2}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )^2}{\left (\csc \left (e+f x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{a}\)

\(\Big \downarrow \) 4445

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \left (\frac {2 \tan (e+f x) \left (c^2-c^2 \sec (e+f x)\right )}{3 f (a \sec (e+f x)+a)^2}-\frac {c \int \frac {\sec (e+f x) (c-c \sec (e+f x))}{\sec (e+f x) a+a}dx}{a}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \left (\frac {2 \tan (e+f x) \left (c^2-c^2 \sec (e+f x)\right )}{3 f (a \sec (e+f x)+a)^2}-\frac {c \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \left (c-c \csc \left (e+f x+\frac {\pi }{2}\right )\right )}{\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}dx}{a}\right )}{a}\)

\(\Big \downarrow \) 4445

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \left (\frac {2 \tan (e+f x) \left (c^2-c^2 \sec (e+f x)\right )}{3 f (a \sec (e+f x)+a)^2}-\frac {c \left (\frac {2 c \tan (e+f x)}{f (a \sec (e+f x)+a)}-\frac {c \int \sec (e+f x)dx}{a}\right )}{a}\right )}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \left (\frac {2 \tan (e+f x) \left (c^2-c^2 \sec (e+f x)\right )}{3 f (a \sec (e+f x)+a)^2}-\frac {c \left (\frac {2 c \tan (e+f x)}{f (a \sec (e+f x)+a)}-\frac {c \int \csc \left (e+f x+\frac {\pi }{2}\right )dx}{a}\right )}{a}\right )}{a}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {2 c \tan (e+f x) (c-c \sec (e+f x))^2}{5 f (a \sec (e+f x)+a)^3}-\frac {c \left (\frac {2 \tan (e+f x) \left (c^2-c^2 \sec (e+f x)\right )}{3 f (a \sec (e+f x)+a)^2}-\frac {c \left (\frac {2 c \tan (e+f x)}{f (a \sec (e+f x)+a)}-\frac {c \text {arctanh}(\sin (e+f x))}{a f}\right )}{a}\right )}{a}\)

Input:

Int[(Sec[e + f*x]*(c - c*Sec[e + f*x])^3)/(a + a*Sec[e + f*x])^3,x]
 

Output:

(2*c*(c - c*Sec[e + f*x])^2*Tan[e + f*x])/(5*f*(a + a*Sec[e + f*x])^3) - ( 
c*((2*(c^2 - c^2*Sec[e + f*x])*Tan[e + f*x])/(3*f*(a + a*Sec[e + f*x])^2) 
- (c*(-((c*ArcTanh[Sin[e + f*x]])/(a*f)) + (2*c*Tan[e + f*x])/(f*(a + a*Se 
c[e + f*x]))))/a))/a
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4445
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + 
f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m + 1))), 
 x] - Simp[d*((2*n - 1)/(b*(2*m + 1)))   Int[Csc[e + f*x]*(a + b*Csc[e + f* 
x])^(m + 1)*(c + d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f 
}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] && LtQ[m, -2^ 
(-1)] && IntegerQ[2*m]
 
Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.58

method result size
derivativedivides \(\frac {2 c^{3} \left (\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{5}+\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{3}+\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+\frac {\ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{2}-\frac {\ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{2}\right )}{f \,a^{3}}\) \(76\)
default \(\frac {2 c^{3} \left (\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{5}+\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{3}+\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+\frac {\ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{2}-\frac {\ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{2}\right )}{f \,a^{3}}\) \(76\)
parallelrisch \(\frac {c^{3} \left (6 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}+10 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}+15 \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )-15 \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )+30 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15 a^{3} f}\) \(78\)
risch \(\frac {4 i c^{3} \left (15 \,{\mathrm e}^{4 i \left (f x +e \right )}+30 \,{\mathrm e}^{3 i \left (f x +e \right )}+100 \,{\mathrm e}^{2 i \left (f x +e \right )}+50 \,{\mathrm e}^{i \left (f x +e \right )}+13\right )}{15 f \,a^{3} \left ({\mathrm e}^{i \left (f x +e \right )}+1\right )^{5}}+\frac {c^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}-i\right )}{a^{3} f}-\frac {c^{3} \ln \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )}{a^{3} f}\) \(120\)
norman \(\frac {-\frac {2 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{a f}+\frac {16 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}}{3 a f}-\frac {22 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}}{5 a f}+\frac {6 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{7}}{5 a f}-\frac {8 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{9}}{15 a f}+\frac {2 c^{3} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{11}}{5 a f}}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{2}-1\right )^{3} a^{2}}+\frac {c^{3} \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )}{a^{3} f}-\frac {c^{3} \ln \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )}{a^{3} f}\) \(197\)

Input:

int(sec(f*x+e)*(c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^3,x,method=_RETURNVERBO 
SE)
 

Output:

2/f*c^3/a^3*(1/5*tan(1/2*f*x+1/2*e)^5+1/3*tan(1/2*f*x+1/2*e)^3+tan(1/2*f*x 
+1/2*e)+1/2*ln(tan(1/2*f*x+1/2*e)-1)-1/2*ln(tan(1/2*f*x+1/2*e)+1))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.47 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=-\frac {15 \, {\left (c^{3} \cos \left (f x + e\right )^{3} + 3 \, c^{3} \cos \left (f x + e\right )^{2} + 3 \, c^{3} \cos \left (f x + e\right ) + c^{3}\right )} \log \left (\sin \left (f x + e\right ) + 1\right ) - 15 \, {\left (c^{3} \cos \left (f x + e\right )^{3} + 3 \, c^{3} \cos \left (f x + e\right )^{2} + 3 \, c^{3} \cos \left (f x + e\right ) + c^{3}\right )} \log \left (-\sin \left (f x + e\right ) + 1\right ) - 4 \, {\left (13 \, c^{3} \cos \left (f x + e\right )^{2} + 24 \, c^{3} \cos \left (f x + e\right ) + 23 \, c^{3}\right )} \sin \left (f x + e\right )}{30 \, {\left (a^{3} f \cos \left (f x + e\right )^{3} + 3 \, a^{3} f \cos \left (f x + e\right )^{2} + 3 \, a^{3} f \cos \left (f x + e\right ) + a^{3} f\right )}} \] Input:

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^3,x, algorithm="f 
ricas")
 

Output:

-1/30*(15*(c^3*cos(f*x + e)^3 + 3*c^3*cos(f*x + e)^2 + 3*c^3*cos(f*x + e) 
+ c^3)*log(sin(f*x + e) + 1) - 15*(c^3*cos(f*x + e)^3 + 3*c^3*cos(f*x + e) 
^2 + 3*c^3*cos(f*x + e) + c^3)*log(-sin(f*x + e) + 1) - 4*(13*c^3*cos(f*x 
+ e)^2 + 24*c^3*cos(f*x + e) + 23*c^3)*sin(f*x + e))/(a^3*f*cos(f*x + e)^3 
 + 3*a^3*f*cos(f*x + e)^2 + 3*a^3*f*cos(f*x + e) + a^3*f)
 

Sympy [F]

\[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=- \frac {c^{3} \left (\int \left (- \frac {\sec {\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} + 1}\right )\, dx + \int \frac {3 \sec ^{2}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} + 1}\, dx + \int \left (- \frac {3 \sec ^{3}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} + 1}\right )\, dx + \int \frac {\sec ^{4}{\left (e + f x \right )}}{\sec ^{3}{\left (e + f x \right )} + 3 \sec ^{2}{\left (e + f x \right )} + 3 \sec {\left (e + f x \right )} + 1}\, dx\right )}{a^{3}} \] Input:

integrate(sec(f*x+e)*(c-c*sec(f*x+e))**3/(a+a*sec(f*x+e))**3,x)
 

Output:

-c**3*(Integral(-sec(e + f*x)/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec 
(e + f*x) + 1), x) + Integral(3*sec(e + f*x)**2/(sec(e + f*x)**3 + 3*sec(e 
 + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(-3*sec(e + f*x)**3/(sec(e 
+ f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x) + Integral(sec(e + 
 f*x)**4/(sec(e + f*x)**3 + 3*sec(e + f*x)**2 + 3*sec(e + f*x) + 1), x))/a 
**3
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 304 vs. \(2 (129) = 258\).

Time = 0.05 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.32 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=\frac {c^{3} {\left (\frac {\frac {105 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {20 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}}{a^{3}} - \frac {60 \, \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{a^{3}} + \frac {60 \, \log \left (\frac {\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{a^{3}}\right )} + \frac {3 \, c^{3} {\left (\frac {15 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {10 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac {c^{3} {\left (\frac {15 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {10 \, \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )}}{a^{3}} - \frac {9 \, c^{3} {\left (\frac {5 \, \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - \frac {\sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, f} \] Input:

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^3,x, algorithm="m 
axima")
 

Output:

1/60*(c^3*((105*sin(f*x + e)/(cos(f*x + e) + 1) + 20*sin(f*x + e)^3/(cos(f 
*x + e) + 1)^3 + 3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3 - 60*log(sin(f 
*x + e)/(cos(f*x + e) + 1) + 1)/a^3 + 60*log(sin(f*x + e)/(cos(f*x + e) + 
1) - 1)/a^3) + 3*c^3*(15*sin(f*x + e)/(cos(f*x + e) + 1) + 10*sin(f*x + e) 
^3/(cos(f*x + e) + 1)^3 + 3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3 + c^3 
*(15*sin(f*x + e)/(cos(f*x + e) + 1) - 10*sin(f*x + e)^3/(cos(f*x + e) + 1 
)^3 + 3*sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3 - 9*c^3*(5*sin(f*x + e)/( 
cos(f*x + e) + 1) - sin(f*x + e)^5/(cos(f*x + e) + 1)^5)/a^3)/f
 

Giac [A] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.83 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=-\frac {\frac {15 \, c^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1 \right |}\right )}{a^{3}} - \frac {15 \, c^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1 \right |}\right )}{a^{3}} - \frac {2 \, {\left (3 \, a^{12} c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{5} + 5 \, a^{12} c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 15 \, a^{12} c^{3} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{a^{15}}}{15 \, f} \] Input:

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^3,x, algorithm="g 
iac")
 

Output:

-1/15*(15*c^3*log(abs(tan(1/2*f*x + 1/2*e) + 1))/a^3 - 15*c^3*log(abs(tan( 
1/2*f*x + 1/2*e) - 1))/a^3 - 2*(3*a^12*c^3*tan(1/2*f*x + 1/2*e)^5 + 5*a^12 
*c^3*tan(1/2*f*x + 1/2*e)^3 + 15*a^12*c^3*tan(1/2*f*x + 1/2*e))/a^15)/f
 

Mupad [B] (verification not implemented)

Time = 10.72 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.47 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=\frac {2\,c^3\,\left (15\,\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )-15\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\right )+5\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3+3\,{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5\right )}{15\,a^3\,f} \] Input:

int((c - c/cos(e + f*x))^3/(cos(e + f*x)*(a + a/cos(e + f*x))^3),x)
 

Output:

(2*c^3*(15*tan(e/2 + (f*x)/2) - 15*atanh(tan(e/2 + (f*x)/2)) + 5*tan(e/2 + 
 (f*x)/2)^3 + 3*tan(e/2 + (f*x)/2)^5))/(15*a^3*f)
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.59 \[ \int \frac {\sec (e+f x) (c-c \sec (e+f x))^3}{(a+a \sec (e+f x))^3} \, dx=\frac {c^{3} \left (15 \,\mathrm {log}\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )-1\right )-15 \,\mathrm {log}\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )+6 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{5}+10 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )^{3}+30 \tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{15 a^{3} f} \] Input:

int(sec(f*x+e)*(c-c*sec(f*x+e))^3/(a+a*sec(f*x+e))^3,x)
 

Output:

(c**3*(15*log(tan((e + f*x)/2) - 1) - 15*log(tan((e + f*x)/2) + 1) + 6*tan 
((e + f*x)/2)**5 + 10*tan((e + f*x)/2)**3 + 30*tan((e + f*x)/2)))/(15*a**3 
*f)