\(\int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [91]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 156 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {(4 A-7 B) \text {arctanh}(\sin (c+d x))}{2 a^2 d}+\frac {2 (5 A-8 B) \tan (c+d x)}{3 a^2 d}-\frac {(4 A-7 B) \sec (c+d x) \tan (c+d x)}{2 a^2 d}+\frac {(5 A-8 B) \sec ^2(c+d x) \tan (c+d x)}{3 a^2 d (1+\sec (c+d x))}+\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{3 d (a+a \sec (c+d x))^2} \] Output:

-1/2*(4*A-7*B)*arctanh(sin(d*x+c))/a^2/d+2/3*(5*A-8*B)*tan(d*x+c)/a^2/d-1/ 
2*(4*A-7*B)*sec(d*x+c)*tan(d*x+c)/a^2/d+1/3*(5*A-8*B)*sec(d*x+c)^2*tan(d*x 
+c)/a^2/d/(1+sec(d*x+c))+1/3*(A-B)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+ 
c))^2
 

Mathematica [A] (verified)

Time = 1.44 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.83 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\sec ^2(c+d x) \left (-24 (4 A-7 B) \text {arctanh}(\sin (c+d x)) \cos ^4\left (\frac {1}{2} (c+d x)\right )+(28 A-37 B+6 (7 A-10 B) \cos (c+d x)+(28 A-43 B) \cos (2 (c+d x))+10 A \cos (3 (c+d x))-16 B \cos (3 (c+d x))) \sec (c+d x) \tan (c+d x)\right )}{12 a^2 d (1+\sec (c+d x))^2} \] Input:

Integrate[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 

Output:

(Sec[c + d*x]^2*(-24*(4*A - 7*B)*ArcTanh[Sin[c + d*x]]*Cos[(c + d*x)/2]^4 
+ (28*A - 37*B + 6*(7*A - 10*B)*Cos[c + d*x] + (28*A - 43*B)*Cos[2*(c + d* 
x)] + 10*A*Cos[3*(c + d*x)] - 16*B*Cos[3*(c + d*x)])*Sec[c + d*x]*Tan[c + 
d*x]))/(12*a^2*d*(1 + Sec[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.99, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {3042, 4507, 3042, 4507, 3042, 4274, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^4 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int \frac {\sec ^3(c+d x) (3 a (A-B)-a (2 A-5 B) \sec (c+d x))}{\sec (c+d x) a+a}dx}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (3 a (A-B)-a (2 A-5 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\frac {\int \sec ^2(c+d x) \left (2 a^2 (5 A-8 B)-3 a^2 (4 A-7 B) \sec (c+d x)\right )dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (2 a^2 (5 A-8 B)-3 a^2 (4 A-7 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {2 a^2 (5 A-8 B) \int \sec ^2(c+d x)dx-3 a^2 (4 A-7 B) \int \sec ^3(c+d x)dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 a^2 (5 A-8 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx-3 a^2 (4 A-7 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {-\frac {2 a^2 (5 A-8 B) \int 1d(-\tan (c+d x))}{d}-3 a^2 (4 A-7 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {\frac {2 a^2 (5 A-8 B) \tan (c+d x)}{d}-3 a^2 (4 A-7 B) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {\frac {2 a^2 (5 A-8 B) \tan (c+d x)}{d}-3 a^2 (4 A-7 B) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\frac {2 a^2 (5 A-8 B) \tan (c+d x)}{d}-3 a^2 (4 A-7 B) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {\frac {2 a^2 (5 A-8 B) \tan (c+d x)}{d}-3 a^2 (4 A-7 B) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )}{a^2}+\frac {(5 A-8 B) \tan (c+d x) \sec ^2(c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

Input:

Int[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 

Output:

((A - B)*Sec[c + d*x]^3*Tan[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2) + (((5* 
A - 8*B)*Sec[c + d*x]^2*Tan[c + d*x])/(d*(1 + Sec[c + d*x])) + ((2*a^2*(5* 
A - 8*B)*Tan[c + d*x])/d - 3*a^2*(4*A - 7*B)*(ArcTanh[Sin[c + d*x]]/(2*d) 
+ (Sec[c + d*x]*Tan[c + d*x])/(2*d)))/a^2)/(3*a^2)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.03

method result size
parallelrisch \(\frac {4 \left (1+\cos \left (2 d x +2 c \right )\right ) \left (A -\frac {7 B}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-4 \left (1+\cos \left (2 d x +2 c \right )\right ) \left (A -\frac {7 B}{4}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\frac {\left (2 A -\frac {43 B}{14}\right ) \cos \left (2 d x +2 c \right )}{3}+\frac {\left (5 A -8 B \right ) \cos \left (3 d x +3 c \right )}{21}+\left (A -\frac {10 B}{7}\right ) \cos \left (d x +c \right )+\frac {2 A}{3}-\frac {37 B}{42}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 d \,a^{2} \left (1+\cos \left (2 d x +2 c \right )\right )}\) \(160\)
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -\frac {2 A -5 B}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\left (7 B -4 A \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {B}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2 A -5 B}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}+\left (4 A -7 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\frac {B}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}}{2 d \,a^{2}}\) \(177\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}+5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A -7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B -\frac {2 A -5 B}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1}+\left (7 B -4 A \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-\frac {B}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {2 A -5 B}{\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1}+\left (4 A -7 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+\frac {B}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}}{2 d \,a^{2}}\) \(177\)
norman \(\frac {\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{6 a d}+\frac {\left (9 A -13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}-\frac {\left (11 A -18 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{a d}+\frac {\left (11 A -17 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{6 a d}+\frac {\left (61 A -100 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 a d}-\frac {\left (95 A -149 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 a d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4} a}+\frac {\left (4 A -7 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 a^{2} d}-\frac {\left (4 A -7 B \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 a^{2} d}\) \(228\)
risch \(\frac {i \left (12 A \,{\mathrm e}^{6 i \left (d x +c \right )}-21 B \,{\mathrm e}^{6 i \left (d x +c \right )}+36 A \,{\mathrm e}^{5 i \left (d x +c \right )}-63 B \,{\mathrm e}^{5 i \left (d x +c \right )}+56 A \,{\mathrm e}^{4 i \left (d x +c \right )}-98 B \,{\mathrm e}^{4 i \left (d x +c \right )}+84 A \,{\mathrm e}^{3 i \left (d x +c \right )}-126 B \,{\mathrm e}^{3 i \left (d x +c \right )}+64 A \,{\mathrm e}^{2 i \left (d x +c \right )}-97 B \,{\mathrm e}^{2 i \left (d x +c \right )}+48 \,{\mathrm e}^{i \left (d x +c \right )} A -75 B \,{\mathrm e}^{i \left (d x +c \right )}+20 A -32 B \right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3} \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) A}{a^{2} d}+\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) B}{2 a^{2} d}+\frac {2 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) A}{a^{2} d}-\frac {7 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) B}{2 a^{2} d}\) \(276\)

Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBO 
SE)
 

Output:

1/2*(4*(1+cos(2*d*x+2*c))*(A-7/4*B)*ln(tan(1/2*d*x+1/2*c)-1)-4*(1+cos(2*d* 
x+2*c))*(A-7/4*B)*ln(tan(1/2*d*x+1/2*c)+1)+7*tan(1/2*d*x+1/2*c)*(1/3*(2*A- 
43/14*B)*cos(2*d*x+2*c)+1/21*(5*A-8*B)*cos(3*d*x+3*c)+(A-10/7*B)*cos(d*x+c 
)+2/3*A-37/42*B)*sec(1/2*d*x+1/2*c)^2)/d/a^2/(1+cos(2*d*x+2*c))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.46 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {3 \, {\left ({\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left ({\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (4 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (4 \, {\left (5 \, A - 8 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (28 \, A - 43 \, B\right )} \cos \left (d x + c\right )^{2} + 6 \, {\left (A - B\right )} \cos \left (d x + c\right ) + 3 \, B\right )} \sin \left (d x + c\right )}{12 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="f 
ricas")
 

Output:

-1/12*(3*((4*A - 7*B)*cos(d*x + c)^4 + 2*(4*A - 7*B)*cos(d*x + c)^3 + (4*A 
 - 7*B)*cos(d*x + c)^2)*log(sin(d*x + c) + 1) - 3*((4*A - 7*B)*cos(d*x + c 
)^4 + 2*(4*A - 7*B)*cos(d*x + c)^3 + (4*A - 7*B)*cos(d*x + c)^2)*log(-sin( 
d*x + c) + 1) - 2*(4*(5*A - 8*B)*cos(d*x + c)^3 + (28*A - 43*B)*cos(d*x + 
c)^2 + 6*(A - B)*cos(d*x + c) + 3*B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^4 + 
 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \sec ^{4}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec ^{5}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(sec(d*x+c)**4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**2,x)
 

Output:

(Integral(A*sec(c + d*x)**4/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + I 
ntegral(B*sec(c + d*x)**5/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x))/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 336 vs. \(2 (146) = 292\).

Time = 0.04 (sec) , antiderivative size = 336, normalized size of antiderivative = 2.15 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {B {\left (\frac {6 \, {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {5 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2} - \frac {2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\frac {21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {21 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac {21 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}}\right )} - A {\left (\frac {\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {12 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}{a^{2}} + \frac {12 \, \log \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - 1\right )}{a^{2}} + \frac {12 \, \sin \left (d x + c\right )}{{\left (a^{2} - \frac {a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{6 \, d} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="m 
axima")
 

Output:

-1/6*(B*(6*(3*sin(d*x + c)/(cos(d*x + c) + 1) - 5*sin(d*x + c)^3/(cos(d*x 
+ c) + 1)^3)/(a^2 - 2*a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^2*sin(d* 
x + c)^4/(cos(d*x + c) + 1)^4) + (21*sin(d*x + c)/(cos(d*x + c) + 1) + sin 
(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 21*log(sin(d*x + c)/(cos(d*x + c) 
+ 1) + 1)/a^2 + 21*log(sin(d*x + c)/(cos(d*x + c) + 1) - 1)/a^2) - A*((15* 
sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 
 - 12*log(sin(d*x + c)/(cos(d*x + c) + 1) + 1)/a^2 + 12*log(sin(d*x + c)/( 
cos(d*x + c) + 1) - 1)/a^2 + 12*sin(d*x + c)/((a^2 - a^2*sin(d*x + c)^2/(c 
os(d*x + c) + 1)^2)*(cos(d*x + c) + 1))))/d
 

Giac [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.27 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {\frac {3 \, {\left (4 \, A - 7 \, B\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {3 \, {\left (4 \, A - 7 \, B\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {6 \, {\left (2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2}} - \frac {A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 21 \, B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="g 
iac")
 

Output:

-1/6*(3*(4*A - 7*B)*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - 3*(4*A - 7*B) 
*log(abs(tan(1/2*d*x + 1/2*c) - 1))/a^2 + 6*(2*A*tan(1/2*d*x + 1/2*c)^3 - 
5*B*tan(1/2*d*x + 1/2*c)^3 - 2*A*tan(1/2*d*x + 1/2*c) + 3*B*tan(1/2*d*x + 
1/2*c))/((tan(1/2*d*x + 1/2*c)^2 - 1)^2*a^2) - (A*a^4*tan(1/2*d*x + 1/2*c) 
^3 - B*a^4*tan(1/2*d*x + 1/2*c)^3 + 15*A*a^4*tan(1/2*d*x + 1/2*c) - 21*B*a 
^4*tan(1/2*d*x + 1/2*c))/a^6)/d
 

Mupad [B] (verification not implemented)

Time = 11.37 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.06 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {3\,\left (A-B\right )}{2\,a^2}+\frac {2\,A-4\,B}{2\,a^2}\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (2\,A-5\,B\right )-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (2\,A-3\,B\right )}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a^2\right )}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A-B\right )}{6\,a^2\,d}-\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (4\,A-7\,B\right )}{a^2\,d} \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^4*(a + a/cos(c + d*x))^2),x)
 

Output:

(tan(c/2 + (d*x)/2)*((3*(A - B))/(2*a^2) + (2*A - 4*B)/(2*a^2)))/d - (tan( 
c/2 + (d*x)/2)^3*(2*A - 5*B) - tan(c/2 + (d*x)/2)*(2*A - 3*B))/(d*(a^2*tan 
(c/2 + (d*x)/2)^4 - 2*a^2*tan(c/2 + (d*x)/2)^2 + a^2)) + (tan(c/2 + (d*x)/ 
2)^3*(A - B))/(6*a^2*d) - (atanh(tan(c/2 + (d*x)/2))*(4*A - 7*B))/(a^2*d)
 

Reduce [B] (verification not implemented)

Time = 0.18 (sec) , antiderivative size = 412, normalized size of antiderivative = 2.64 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {12 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -21 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b -24 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +42 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b +12 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a -21 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) b -12 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +21 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} b +24 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -42 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -12 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a +21 \,\mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) b +\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7} b +13 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} a -19 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} b -41 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} a +71 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} b +27 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -39 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{6 a^{2} d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )} \] Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x)
 

Output:

(12*log(tan((c + d*x)/2) - 1)*tan((c + d*x)/2)**4*a - 21*log(tan((c + d*x) 
/2) - 1)*tan((c + d*x)/2)**4*b - 24*log(tan((c + d*x)/2) - 1)*tan((c + d*x 
)/2)**2*a + 42*log(tan((c + d*x)/2) - 1)*tan((c + d*x)/2)**2*b + 12*log(ta 
n((c + d*x)/2) - 1)*a - 21*log(tan((c + d*x)/2) - 1)*b - 12*log(tan((c + d 
*x)/2) + 1)*tan((c + d*x)/2)**4*a + 21*log(tan((c + d*x)/2) + 1)*tan((c + 
d*x)/2)**4*b + 24*log(tan((c + d*x)/2) + 1)*tan((c + d*x)/2)**2*a - 42*log 
(tan((c + d*x)/2) + 1)*tan((c + d*x)/2)**2*b - 12*log(tan((c + d*x)/2) + 1 
)*a + 21*log(tan((c + d*x)/2) + 1)*b + tan((c + d*x)/2)**7*a - tan((c + d* 
x)/2)**7*b + 13*tan((c + d*x)/2)**5*a - 19*tan((c + d*x)/2)**5*b - 41*tan( 
(c + d*x)/2)**3*a + 71*tan((c + d*x)/2)**3*b + 27*tan((c + d*x)/2)*a - 39* 
tan((c + d*x)/2)*b)/(6*a**2*d*(tan((c + d*x)/2)**4 - 2*tan((c + d*x)/2)**2 
 + 1))