\(\int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [97]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 143 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {(7 A-4 B) x}{2 a^2}-\frac {2 (8 A-5 B) \sin (c+d x)}{3 a^2 d}+\frac {(7 A-4 B) \cos (c+d x) \sin (c+d x)}{2 a^2 d}-\frac {(8 A-5 B) \cos (c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {(A-B) \cos (c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \] Output:

1/2*(7*A-4*B)*x/a^2-2/3*(8*A-5*B)*sin(d*x+c)/a^2/d+1/2*(7*A-4*B)*cos(d*x+c 
)*sin(d*x+c)/a^2/d-1/3*(8*A-5*B)*cos(d*x+c)*sin(d*x+c)/a^2/d/(1+sec(d*x+c) 
)-1/3*(A-B)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(315\) vs. \(2(143)=286\).

Time = 1.92 (sec) , antiderivative size = 315, normalized size of antiderivative = 2.20 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (36 (7 A-4 B) d x \cos \left (\frac {d x}{2}\right )+36 (7 A-4 B) d x \cos \left (c+\frac {d x}{2}\right )+84 A d x \cos \left (c+\frac {3 d x}{2}\right )-48 B d x \cos \left (c+\frac {3 d x}{2}\right )+84 A d x \cos \left (2 c+\frac {3 d x}{2}\right )-48 B d x \cos \left (2 c+\frac {3 d x}{2}\right )-381 A \sin \left (\frac {d x}{2}\right )+264 B \sin \left (\frac {d x}{2}\right )+147 A \sin \left (c+\frac {d x}{2}\right )-120 B \sin \left (c+\frac {d x}{2}\right )-239 A \sin \left (c+\frac {3 d x}{2}\right )+164 B \sin \left (c+\frac {3 d x}{2}\right )-63 A \sin \left (2 c+\frac {3 d x}{2}\right )+36 B \sin \left (2 c+\frac {3 d x}{2}\right )-15 A \sin \left (2 c+\frac {5 d x}{2}\right )+12 B \sin \left (2 c+\frac {5 d x}{2}\right )-15 A \sin \left (3 c+\frac {5 d x}{2}\right )+12 B \sin \left (3 c+\frac {5 d x}{2}\right )+3 A \sin \left (3 c+\frac {7 d x}{2}\right )+3 A \sin \left (4 c+\frac {7 d x}{2}\right )\right )}{48 a^2 d (1+\cos (c+d x))^2} \] Input:

Integrate[(Cos[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 

Output:

(Cos[(c + d*x)/2]*Sec[c/2]*(36*(7*A - 4*B)*d*x*Cos[(d*x)/2] + 36*(7*A - 4* 
B)*d*x*Cos[c + (d*x)/2] + 84*A*d*x*Cos[c + (3*d*x)/2] - 48*B*d*x*Cos[c + ( 
3*d*x)/2] + 84*A*d*x*Cos[2*c + (3*d*x)/2] - 48*B*d*x*Cos[2*c + (3*d*x)/2] 
- 381*A*Sin[(d*x)/2] + 264*B*Sin[(d*x)/2] + 147*A*Sin[c + (d*x)/2] - 120*B 
*Sin[c + (d*x)/2] - 239*A*Sin[c + (3*d*x)/2] + 164*B*Sin[c + (3*d*x)/2] - 
63*A*Sin[2*c + (3*d*x)/2] + 36*B*Sin[2*c + (3*d*x)/2] - 15*A*Sin[2*c + (5* 
d*x)/2] + 12*B*Sin[2*c + (5*d*x)/2] - 15*A*Sin[3*c + (5*d*x)/2] + 12*B*Sin 
[3*c + (5*d*x)/2] + 3*A*Sin[3*c + (7*d*x)/2] + 3*A*Sin[4*c + (7*d*x)/2]))/ 
(48*a^2*d*(1 + Cos[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 142, normalized size of antiderivative = 0.99, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 4508, 3042, 4508, 3042, 4274, 3042, 3115, 24, 3117}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\int \frac {\cos ^2(c+d x) (a (5 A-2 B)-3 a (A-B) \sec (c+d x))}{\sec (c+d x) a+a}dx}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A-2 B)-3 a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\frac {\int \cos ^2(c+d x) \left (3 a^2 (7 A-4 B)-2 a^2 (8 A-5 B) \sec (c+d x)\right )dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 a^2 (7 A-4 B)-2 a^2 (8 A-5 B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {3 a^2 (7 A-4 B) \int \cos ^2(c+d x)dx-2 a^2 (8 A-5 B) \int \cos (c+d x)dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {3 a^2 (7 A-4 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-2 a^2 (8 A-5 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {\frac {3 a^2 (7 A-4 B) \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-2 a^2 (8 A-5 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {3 a^2 (7 A-4 B) \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )-2 a^2 (8 A-5 B) \int \sin \left (c+d x+\frac {\pi }{2}\right )dx}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

\(\Big \downarrow \) 3117

\(\displaystyle \frac {\frac {3 a^2 (7 A-4 B) \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )-\frac {2 a^2 (8 A-5 B) \sin (c+d x)}{d}}{a^2}-\frac {(8 A-5 B) \sin (c+d x) \cos (c+d x)}{d (\sec (c+d x)+1)}}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos (c+d x)}{3 d (a \sec (c+d x)+a)^2}\)

Input:

Int[(Cos[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 

Output:

-1/3*((A - B)*Cos[c + d*x]*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^2) + (-(( 
(8*A - 5*B)*Cos[c + d*x]*Sin[c + d*x])/(d*(1 + Sec[c + d*x]))) + ((-2*a^2* 
(8*A - 5*B)*Sin[c + d*x])/d + 3*a^2*(7*A - 4*B)*(x/2 + (Cos[c + d*x]*Sin[c 
 + d*x])/(2*d)))/a^2)/(3*a^2)
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3117
Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; 
 FreeQ[{c, d}, x]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [A] (verified)

Time = 0.39 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.62

method result size
parallelrisch \(\frac {-163 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\frac {12 \left (A -B \right ) \cos \left (2 d x +2 c \right )}{163}-\frac {3 A \cos \left (3 d x +3 c \right )}{163}+\left (A -\frac {112 B}{163}\right ) \cos \left (d x +c \right )+\frac {140 A}{163}-\frac {92 B}{163}\right ) \sec \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+168 \left (A -\frac {4 B}{7}\right ) d x}{48 a^{2} d}\) \(88\)
derivativedivides \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {4 \left (-\frac {5 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+4 \left (-\frac {3 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}+2 \left (7 A -4 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(131\)
default \(\frac {\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} A}{3}-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} B}{3}-7 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) A +5 \tan \left (\frac {d x}{2}+\frac {c}{2}\right ) B +\frac {4 \left (-\frac {5 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+4 \left (-\frac {3 A}{2}+B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2}}+2 \left (7 A -4 B \right ) \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d \,a^{2}}\) \(131\)
norman \(\frac {\frac {\left (7 A -4 B \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{a}+\frac {\left (7 A -4 B \right ) x}{2 a}+\frac {\left (A -B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 a d}+\frac {\left (7 A -4 B \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a}-\frac {\left (13 A -9 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a d}-\frac {\left (19 A -13 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{6 a d}-\frac {\left (71 A -41 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 a d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} a}\) \(181\)
risch \(\frac {7 A x}{2 a^{2}}-\frac {2 x B}{a^{2}}-\frac {i A \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 a^{2} d}+\frac {i A \,{\mathrm e}^{i \left (d x +c \right )}}{a^{2} d}-\frac {i {\mathrm e}^{i \left (d x +c \right )} B}{2 a^{2} d}-\frac {i A \,{\mathrm e}^{-i \left (d x +c \right )}}{a^{2} d}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} B}{2 a^{2} d}+\frac {i A \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 a^{2} d}-\frac {2 i \left (12 A \,{\mathrm e}^{2 i \left (d x +c \right )}-9 B \,{\mathrm e}^{2 i \left (d x +c \right )}+21 \,{\mathrm e}^{i \left (d x +c \right )} A -15 B \,{\mathrm e}^{i \left (d x +c \right )}+11 A -8 B \right )}{3 d \,a^{2} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{3}}\) \(207\)

Input:

int(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBO 
SE)
 

Output:

1/48*(-163*tan(1/2*d*x+1/2*c)*(12/163*(A-B)*cos(2*d*x+2*c)-3/163*A*cos(3*d 
*x+3*c)+(A-112/163*B)*cos(d*x+c)+140/163*A-92/163*B)*sec(1/2*d*x+1/2*c)^2+ 
168*(A-4/7*B)*d*x)/a^2/d
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.97 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {3 \, {\left (7 \, A - 4 \, B\right )} d x \cos \left (d x + c\right )^{2} + 6 \, {\left (7 \, A - 4 \, B\right )} d x \cos \left (d x + c\right ) + 3 \, {\left (7 \, A - 4 \, B\right )} d x + {\left (3 \, A \cos \left (d x + c\right )^{3} - 6 \, {\left (A - B\right )} \cos \left (d x + c\right )^{2} - {\left (43 \, A - 28 \, B\right )} \cos \left (d x + c\right ) - 32 \, A + 20 \, B\right )} \sin \left (d x + c\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="f 
ricas")
 

Output:

1/6*(3*(7*A - 4*B)*d*x*cos(d*x + c)^2 + 6*(7*A - 4*B)*d*x*cos(d*x + c) + 3 
*(7*A - 4*B)*d*x + (3*A*cos(d*x + c)^3 - 6*(A - B)*cos(d*x + c)^2 - (43*A 
- 28*B)*cos(d*x + c) - 32*A + 20*B)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 
2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\int \frac {A \cos ^{2}{\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{\sec ^{2}{\left (c + d x \right )} + 2 \sec {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate(cos(d*x+c)**2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**2,x)
 

Output:

(Integral(A*cos(c + d*x)**2/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1), x) + I 
ntegral(B*cos(c + d*x)**2*sec(c + d*x)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 
 1), x))/a**2
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 283 vs. \(2 (133) = 266\).

Time = 0.11 (sec) , antiderivative size = 283, normalized size of antiderivative = 1.98 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {A {\left (\frac {6 \, {\left (\frac {3 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {5 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}\right )}}{a^{2} + \frac {2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}} + \frac {\frac {21 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {42 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}}\right )} - B {\left (\frac {\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}}}{a^{2}} - \frac {24 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{2}} + \frac {12 \, \sin \left (d x + c\right )}{{\left (a^{2} + \frac {a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )} {\left (\cos \left (d x + c\right ) + 1\right )}}\right )}}{6 \, d} \] Input:

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="m 
axima")
                                                                                    
                                                                                    
 

Output:

-1/6*(A*(6*(3*sin(d*x + c)/(cos(d*x + c) + 1) + 5*sin(d*x + c)^3/(cos(d*x 
+ c) + 1)^3)/(a^2 + 2*a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^2*sin(d* 
x + c)^4/(cos(d*x + c) + 1)^4) + (21*sin(d*x + c)/(cos(d*x + c) + 1) - sin 
(d*x + c)^3/(cos(d*x + c) + 1)^3)/a^2 - 42*arctan(sin(d*x + c)/(cos(d*x + 
c) + 1))/a^2) - B*((15*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^3/(c 
os(d*x + c) + 1)^3)/a^2 - 24*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^2 + 
 12*sin(d*x + c)/((a^2 + a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2)*(cos(d*x 
 + c) + 1))))/d
 

Giac [A] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 164, normalized size of antiderivative = 1.15 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\frac {3 \, {\left (d x + c\right )} {\left (7 \, A - 4 \, B\right )}}{a^{2}} - \frac {6 \, {\left (5 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2} a^{2}} + \frac {A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 21 \, A a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 15 \, B a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{6}}}{6 \, d} \] Input:

integrate(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorithm="g 
iac")
 

Output:

1/6*(3*(d*x + c)*(7*A - 4*B)/a^2 - 6*(5*A*tan(1/2*d*x + 1/2*c)^3 - 2*B*tan 
(1/2*d*x + 1/2*c)^3 + 3*A*tan(1/2*d*x + 1/2*c) - 2*B*tan(1/2*d*x + 1/2*c)) 
/((tan(1/2*d*x + 1/2*c)^2 + 1)^2*a^2) + (A*a^4*tan(1/2*d*x + 1/2*c)^3 - B* 
a^4*tan(1/2*d*x + 1/2*c)^3 - 21*A*a^4*tan(1/2*d*x + 1/2*c) + 15*B*a^4*tan( 
1/2*d*x + 1/2*c))/a^6)/d
 

Mupad [B] (verification not implemented)

Time = 11.09 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.08 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {x\,\left (7\,A-4\,B\right )}{2\,a^2}-\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {3\,\left (A-B\right )}{2\,a^2}+\frac {4\,A-2\,B}{2\,a^2}\right )}{d}-\frac {\left (5\,A-2\,B\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (3\,A-2\,B\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left (a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+a^2\right )}+\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (A-B\right )}{6\,a^2\,d} \] Input:

int((cos(c + d*x)^2*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^2,x)
 

Output:

(x*(7*A - 4*B))/(2*a^2) - (tan(c/2 + (d*x)/2)*((3*(A - B))/(2*a^2) + (4*A 
- 2*B)/(2*a^2)))/d - (tan(c/2 + (d*x)/2)^3*(5*A - 2*B) + tan(c/2 + (d*x)/2 
)*(3*A - 2*B))/(d*(2*a^2*tan(c/2 + (d*x)/2)^2 + a^2*tan(c/2 + (d*x)/2)^4 + 
 a^2)) + (tan(c/2 + (d*x)/2)^3*(A - B))/(6*a^2*d)
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.22 \[ \int \frac {\cos ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {-9 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} a +6 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{2} b +21 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a d x -12 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b d x -2 \cos \left (d x +c \right ) a +2 \cos \left (d x +c \right ) b -3 \sin \left (d x +c \right )^{4} a -31 \sin \left (d x +c \right )^{2} a +22 \sin \left (d x +c \right )^{2} b +21 \sin \left (d x +c \right ) a d x -12 \sin \left (d x +c \right ) b d x +2 a -2 b}{6 \sin \left (d x +c \right ) a^{2} d \left (\cos \left (d x +c \right )+1\right )} \] Input:

int(cos(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x)
 

Output:

( - 9*cos(c + d*x)*sin(c + d*x)**2*a + 6*cos(c + d*x)*sin(c + d*x)**2*b + 
21*cos(c + d*x)*sin(c + d*x)*a*d*x - 12*cos(c + d*x)*sin(c + d*x)*b*d*x - 
2*cos(c + d*x)*a + 2*cos(c + d*x)*b - 3*sin(c + d*x)**4*a - 31*sin(c + d*x 
)**2*a + 22*sin(c + d*x)**2*b + 21*sin(c + d*x)*a*d*x - 12*sin(c + d*x)*b* 
d*x + 2*a - 2*b)/(6*sin(c + d*x)*a**2*d*(cos(c + d*x) + 1))