\(\int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [131]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 103 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{d} \] Output:

a^(3/2)*(3*A+2*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+a^2* 
(A-2*B)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2*a*B*(a+a*sec(d*x+c))^(1/2)*s 
in(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.38 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.89 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^2 \left ((3 A+2 B) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )+(2 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 

Output:

(a^2*((3*A + 2*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]] + (2*B + A*Cos[c + d*x]) 
*Sqrt[1 - Sec[c + d*x]])*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 
 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.258, Rules used = {3042, 4506, 27, 3042, 4503, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos (c+d x) (a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx\)

\(\Big \downarrow \) 4506

\(\displaystyle 2 \int \frac {1}{2} \cos (c+d x) \sqrt {\sec (c+d x) a+a} (a (A-2 B)+a (A+2 B) \sec (c+d x))dx+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \cos (c+d x) \sqrt {\sec (c+d x) a+a} (a (A-2 B)+a (A+2 B) \sec (c+d x))dx+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (A-2 B)+a (A+2 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{2} a (3 A+2 B) \int \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} a (3 A+2 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 4261

\(\displaystyle -\frac {a^2 (3 A+2 B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a^{3/2} (3 A+2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (A-2 B) \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{d}\)

Input:

Int[Cos[c + d*x]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 

Output:

(a^(3/2)*(3*A + 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x] 
]])/d + (a^2*(A - 2*B)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*B 
*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(231\) vs. \(2(93)=186\).

Time = 3.52 (sec) , antiderivative size = 232, normalized size of antiderivative = 2.25

method result size
default \(-\frac {a \left (\left (3 \cos \left (d x +c \right )+3\right ) \sqrt {2}\, A \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\left (2+2 \cos \left (d x +c \right )\right ) \sqrt {2}\, B \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )-2 A \cos \left (d x +c \right ) \sin \left (d x +c \right )-4 B \sin \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{2 d \left (1+\cos \left (d x +c \right )\right )}\) \(232\)

Input:

int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

-1/2/d*a*((3*cos(d*x+c)+3)*2^(1/2)*A*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)* 
arctanh(2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d* 
x+c)+csc(d*x+c)^2-1)^(1/2))+(2+2*cos(d*x+c))*2^(1/2)*B*(-2*cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)*arctanh(2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(cot(d*x+c)^2-2 
*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2))-2*A*cos(d*x+c)*sin(d*x+c)-4* 
B*sin(d*x+c))*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 292, normalized size of antiderivative = 2.83 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\left [\frac {{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right ) + {\left (3 \, A + 2 \, B\right )} a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (A a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {{\left ({\left (3 \, A + 2 \, B\right )} a \cos \left (d x + c\right ) + {\left (3 \, A + 2 \, B\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (A a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{d \cos \left (d x + c\right ) + d}\right ] \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm= 
"fricas")
 

Output:

[1/2*(((3*A + 2*B)*a*cos(d*x + c) + (3*A + 2*B)*a)*sqrt(-a)*log((2*a*cos(d 
*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c 
)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(A*a*cos(d*x 
+ c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos 
(d*x + c) + d), -(((3*A + 2*B)*a*cos(d*x + c) + (3*A + 2*B)*a)*sqrt(a)*arc 
tan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x 
+ c))) - (A*a*cos(d*x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sin(d*x + c))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1801 vs. \(2 (93) = 186\).

Time = 0.30 (sec) , antiderivative size = 1801, normalized size of antiderivative = 17.49 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm= 
"maxima")
                                                                                    
                                                                                    
 

Output:

1/4*((2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d* 
x + c) - (a*cos(d*x + c) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c 
) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos 
(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x 
+ 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2* 
c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2* 
d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(s 
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 
+ sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2 
*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c 
)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 406 vs. \(2 (93) = 186\).

Time = 0.73 (sec) , antiderivative size = 406, normalized size of antiderivative = 3.94 \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=-\frac {\frac {4 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} B a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a} + {\left (3 \, A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - {\left (3 \, A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, B \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) + \frac {4 \, {\left (3 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - \sqrt {2} A \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}}}{2 \, d} \] Input:

integrate(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorithm= 
"giac")
 

Output:

-1/2*(4*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*B*a^2*sgn(cos(d*x + c) 
)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a) + (3*A*sqrt(-a)*a*sg 
n(cos(d*x + c)) + 2*B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan( 
1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 
 3))) - (3*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 2*B*sqrt(-a)*a*sgn(cos(d*x + c 
)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^ 
2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(3*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2 
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a)*a^2*sgn(cos(d*x + 
c)) - sqrt(2)*A*sqrt(-a)*a^3*sgn(cos(d*x + c)))/((sqrt(-a)*tan(1/2*d*x + 1 
/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 
 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \cos \left (c+d\,x\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2),x)
 

Output:

int(cos(c + d*x)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \cos (c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cos(d*x+c)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x)**2,x)*b + 
int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x),x)*a + int(sqrt(sec(c 
 + d*x) + 1)*cos(c + d*x)*sec(c + d*x),x)*b + int(sqrt(sec(c + d*x) + 1)*c 
os(c + d*x),x)*a)