\(\int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [134]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 209 \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^{3/2} (75 A+88 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{64 d}+\frac {a^2 (75 A+88 B) \sin (c+d x)}{64 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 (75 A+88 B) \cos (c+d x) \sin (c+d x)}{96 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 (9 A+8 B) \cos ^2(c+d x) \sin (c+d x)}{24 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d} \] Output:

1/64*a^(3/2)*(75*A+88*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2)) 
/d+1/64*a^2*(75*A+88*B)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/96*a^2*(75*A 
+88*B)*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/24*a^2*(9*A+8*B)*c 
os(d*x+c)^2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/4*a*A*cos(d*x+c)^3*(a+a* 
sec(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 154, normalized size of antiderivative = 0.74 \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a \cos (c+d x) \sqrt {a (1+\sec (c+d x))} \left ((285 A+296 B+2 (93 A+88 B) \cos (c+d x)+4 (15 A+8 B) \cos (2 (c+d x))+12 A \cos (3 (c+d x))) \sqrt {1-\sec (c+d x)} \sin (c+d x)+3 (75 A+88 B) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)\right )}{192 d (1+\cos (c+d x)) \sqrt {1-\sec (c+d x)}} \] Input:

Integrate[Cos[c + d*x]^4*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x 
]
 

Output:

(a*Cos[c + d*x]*Sqrt[a*(1 + Sec[c + d*x])]*((285*A + 296*B + 2*(93*A + 88* 
B)*Cos[c + d*x] + 4*(15*A + 8*B)*Cos[2*(c + d*x)] + 12*A*Cos[3*(c + d*x)]) 
*Sqrt[1 - Sec[c + d*x]]*Sin[c + d*x] + 3*(75*A + 88*B)*ArcTanh[Sqrt[1 - Se 
c[c + d*x]]]*Tan[c + d*x]))/(192*d*(1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x 
]])
 

Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.96, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 4505, 27, 3042, 4503, 3042, 4292, 3042, 4292, 3042, 4261, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^4(c+d x) (a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {1}{4} \int \frac {1}{2} \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a (9 A+8 B)+a (5 A+8 B) \sec (c+d x))dx+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{8} \int \cos ^3(c+d x) \sqrt {\sec (c+d x) a+a} (a (9 A+8 B)+a (5 A+8 B) \sec (c+d x))dx+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (9 A+8 B)+a (5 A+8 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \int \cos ^2(c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \int \cos (c+d x) \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\sec (c+d x) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \left (\frac {1}{2} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {1}{8} \left (\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \left (\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{8} \left (\frac {a^2 (9 A+8 B) \sin (c+d x) \cos ^2(c+d x)}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {1}{6} a (75 A+88 B) \left (\frac {3}{4} \left (\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a \sin (c+d x) \cos (c+d x)}{2 d \sqrt {a \sec (c+d x)+a}}\right )\right )+\frac {a A \sin (c+d x) \cos ^3(c+d x) \sqrt {a \sec (c+d x)+a}}{4 d}\)

Input:

Int[Cos[c + d*x]^4*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 

Output:

(a*A*Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(4*d) + ((a^2*( 
9*A + 8*B)*Cos[c + d*x]^2*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + ( 
a*(75*A + 88*B)*((a*Cos[c + d*x]*Sin[c + d*x])/(2*d*Sqrt[a + a*Sec[c + d*x 
]]) + (3*((Sqrt[a]*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]] 
)/d + (a*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])))/4))/6)/8
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 1.98 (sec) , antiderivative size = 280, normalized size of antiderivative = 1.34

method result size
default \(\frac {a \left (\left (225 \cos \left (d x +c \right )+225\right ) A \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\left (264 \cos \left (d x +c \right )+264\right ) B \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (48 \cos \left (d x +c \right )^{3}+120 \cos \left (d x +c \right )^{2}+150 \cos \left (d x +c \right )+225\right ) A +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (64 \cos \left (d x +c \right )^{2}+176 \cos \left (d x +c \right )+264\right ) B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{192 d \left (1+\cos \left (d x +c \right )\right )}\) \(280\)

Input:

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

1/192/d*a*((225*cos(d*x+c)+225)*A*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcta 
nh(2^(1/2)/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(cs 
c(d*x+c)-cot(d*x+c)))+(264*cos(d*x+c)+264)*B*(-cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*arctanh(2^(1/2)/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1 
)^(1/2)*(csc(d*x+c)-cot(d*x+c)))+sin(d*x+c)*cos(d*x+c)*(48*cos(d*x+c)^3+12 
0*cos(d*x+c)^2+150*cos(d*x+c)+225)*A+sin(d*x+c)*cos(d*x+c)*(64*cos(d*x+c)^ 
2+176*cos(d*x+c)+264)*B)*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 396, normalized size of antiderivative = 1.89 \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\left [\frac {3 \, {\left ({\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right ) + {\left (75 \, A + 88 \, B\right )} a\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (48 \, A a \cos \left (d x + c\right )^{4} + 8 \, {\left (15 \, A + 8 \, B\right )} a \cos \left (d x + c\right )^{3} + 2 \, {\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right )^{2} + 3 \, {\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{384 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right ) + {\left (75 \, A + 88 \, B\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (48 \, A a \cos \left (d x + c\right )^{4} + 8 \, {\left (15 \, A + 8 \, B\right )} a \cos \left (d x + c\right )^{3} + 2 \, {\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right )^{2} + 3 \, {\left (75 \, A + 88 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{192 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="fricas")
 

Output:

[1/384*(3*((75*A + 88*B)*a*cos(d*x + c) + (75*A + 88*B)*a)*sqrt(-a)*log((2 
*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos 
(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(48*A 
*a*cos(d*x + c)^4 + 8*(15*A + 8*B)*a*cos(d*x + c)^3 + 2*(75*A + 88*B)*a*co 
s(d*x + c)^2 + 3*(75*A + 88*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/c 
os(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d), -1/192*(3*((75*A + 88*B)* 
a*cos(d*x + c) + (75*A + 88*B)*a)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a) 
/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (48*A*a*cos(d*x + c) 
^4 + 8*(15*A + 8*B)*a*cos(d*x + c)^3 + 2*(75*A + 88*B)*a*cos(d*x + c)^2 + 
3*(75*A + 88*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si 
n(d*x + c))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**4*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1088 vs. \(2 (185) = 370\).

Time = 0.84 (sec) , antiderivative size = 1088, normalized size of antiderivative = 5.21 \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^4*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algorith 
m="giac")
 

Output:

-1/384*(3*(75*A*sqrt(-a)*a*sgn(cos(d*x + c)) + 88*B*sqrt(-a)*a*sgn(cos(d*x 
 + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2 
*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(75*A*sqrt(-a)*a*sgn(cos(d*x + c)) 
 + 88*B*sqrt(-a)*a*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2* 
c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt 
(2)*(225*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + 
 a))^14*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 264*(sqrt(-a)*tan(1/2*d*x + 1/2 
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^14*B*sqrt(-a)*a^2*sgn(cos(d*x + 
 c)) - 6261*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^ 
2 + a))^12*A*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 4008*(sqrt(-a)*tan(1/2*d*x + 
 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^12*B*sqrt(-a)*a^3*sgn(cos(d 
*x + c)) + 35925*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/ 
2*c)^2 + a))^10*A*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 33960*(sqrt(-a)*tan(1/2 
*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*B*sqrt(-a)*a^4*sgn 
(cos(d*x + c)) - 127449*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d 
*x + 1/2*c)^2 + a))^8*A*sqrt(-a)*a^5*sgn(cos(d*x + c)) - 131784*(sqrt(-a)* 
tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^8*B*sqrt(-a)*a 
^5*sgn(cos(d*x + c)) + 101667*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan 
(1/2*d*x + 1/2*c)^2 + a))^6*A*sqrt(-a)*a^6*sgn(cos(d*x + c)) + 108312*(sqr 
t(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*B*s...
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^4\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^4*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2),x)
 

Output:

int(cos(c + d*x)^4*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \cos ^4(c+d x) (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )^{4}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^4*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**4*sec(c + d*x)**2,x)*b 
 + int(sqrt(sec(c + d*x) + 1)*cos(c + d*x)**4*sec(c + d*x),x)*a + int(sqrt 
(sec(c + d*x) + 1)*cos(c + d*x)**4*sec(c + d*x),x)*b + int(sqrt(sec(c + d* 
x) + 1)*cos(c + d*x)**4,x)*a)