\(\int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx\) [149]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 119 \[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {(A-2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {2} (A-B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {A \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \] Output:

-(A-2*B)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+2^(1/ 
2)*(A-B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^( 
1/2)/d+A*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.97 \[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (-\left ((A-2 B) \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right )\right )+\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right )+A \cos (c+d x) \sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Cos[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

((-((A - 2*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]]) + Sqrt[2]*(A - B)*ArcTanh[S 
qrt[1 - Sec[c + d*x]]/Sqrt[2]] + A*Cos[c + d*x]*Sqrt[1 - Sec[c + d*x]])*Ta 
n[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.08, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.323, Rules used = {3042, 4510, 27, 3042, 4408, 3042, 4261, 216, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right ) \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4510

\(\displaystyle \frac {\int -\frac {a (A-2 B)-a A \sec (c+d x)}{2 \sqrt {\sec (c+d x) a+a}}dx}{a}+\frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-2 B)-a A \sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-2 B)-a A \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 4408

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {(A-2 B) \int \sqrt {\sec (c+d x) a+a}dx-2 a (A-B) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {(A-2 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx-2 a (A-B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 4261

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {-\frac {2 a (A-2 B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-2 a (A-B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 \sqrt {a} (A-2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-2 a (A-B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{2 a}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {4 a (A-B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 \sqrt {a} (A-2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {A \sin (c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 \sqrt {a} (A-2 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {2} \sqrt {a} (A-B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{2 a}\)

Input:

Int[(Cos[c + d*x]*(A + B*Sec[c + d*x]))/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

-1/2*((2*Sqrt[a]*(A - 2*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c 
+ d*x]]])/d - (2*Sqrt[2]*Sqrt[a]*(A - B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sq 
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/a + (A*Sin[c + d*x])/(d*Sqrt[a + a*Se 
c[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4261
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) 
  Subst[Int[1/(a + x^2), x], x, b*(Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4408
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_ 
.) + (a_)], x_Symbol] :> Simp[c/a   Int[Sqrt[a + b*Csc[e + f*x]], x], x] - 
Simp[(b*c - a*d)/a   Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; F 
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(358\) vs. \(2(102)=204\).

Time = 1.69 (sec) , antiderivative size = 359, normalized size of antiderivative = 3.02

method result size
default \(-\frac {\left (\left (1+\cos \left (d x +c \right )\right ) \sqrt {2}\, A \,\operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\left (-2 \cos \left (d x +c \right )-2\right ) A \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-2 A \cos \left (d x +c \right ) \sin \left (d x +c \right )+\left (-2 \cos \left (d x +c \right )-2\right ) \sqrt {2}\, B \,\operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\left (2+2 \cos \left (d x +c \right )\right ) B \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{2 d a \left (1+\cos \left (d x +c \right )\right )}\) \(359\)

Input:

int(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVER 
BOSE)
 

Output:

-1/2/d/a*((1+cos(d*x+c))*2^(1/2)*A*arctanh(2^(1/2)/(cot(d*x+c)^2-2*csc(d*x 
+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c)))*(-2*cos(d*x+ 
c)/(1+cos(d*x+c)))^(1/2)+(-2*cos(d*x+c)-2)*A*(-2*cos(d*x+c)/(1+cos(d*x+c)) 
)^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+c)+csc(d*x+c))-2*A 
*cos(d*x+c)*sin(d*x+c)+(-2*cos(d*x+c)-2)*2^(1/2)*B*arctanh(2^(1/2)/(cot(d* 
x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot(d*x+c 
)))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+(2+2*cos(d*x+c))*B*(-2*cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+c)+ 
csc(d*x+c)))*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 458, normalized size of antiderivative = 3.85 \[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {2 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \sqrt {-\frac {1}{a}} \log \left (\frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + {\left ({\left (A - 2 \, B\right )} \cos \left (d x + c\right ) + A - 2 \, B\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, \frac {A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left ({\left (A - 2 \, B\right )} \cos \left (d x + c\right ) + A - 2 \, B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - \frac {\sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right )}{\sqrt {a}}}{a d \cos \left (d x + c\right ) + a d}\right ] \] Input:

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm= 
"fricas")
 

Output:

[1/2*(2*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c 
) - sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*sqrt(-1/a)*log((2*sqrt(2) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + 
 c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(cos(d*x + c)^2 + 2*cos(d*x + 
 c) + 1)) + ((A - 2*B)*cos(d*x + c) + A - 2*B)*sqrt(-a)*log((2*a*cos(d*x + 
 c)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*si 
n(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)))/(a*d*cos(d*x + c) + 
a*d), (A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) 
 + ((A - 2*B)*cos(d*x + c) + A - 2*B)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - sqrt(2)*((A - B) 
*a*cos(d*x + c) + (A - B)*a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c) 
+ a*d)]
 

Sympy [F]

\[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \cos {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*cos(c + d*x)/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*cos(d*x + c)/sqrt(a*sec(d*x + c) + a), x)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 365 vs. \(2 (102) = 204\).

Time = 0.70 (sec) , antiderivative size = 365, normalized size of antiderivative = 3.07 \[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {\sqrt {2} {\left (A - B\right )} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {{\left (A - 2 \, B\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {{\left (A - 2 \, B\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{\sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {4 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} - A \sqrt {-a} a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{2 \, d} \] Input:

integrate(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x, algorithm= 
"giac")
 

Output:

-1/2*(sqrt(2)*(A - B)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2 
*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)*sgn(cos(d*x + c))) + (A - 2*B)*log(abs( 
(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 
a*(2*sqrt(2) + 3)))/(sqrt(-a)*sgn(cos(d*x + c))) - (A - 2*B)*log(abs((sqrt 
(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2* 
sqrt(2) - 3)))/(sqrt(-a)*sgn(cos(d*x + c))) + 4*sqrt(2)*(3*(sqrt(-a)*tan(1 
/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a) - A*sq 
rt(-a)*a)/(((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^ 
2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c 
)^2 + a))^2*a + a^2)*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((cos(c + d*x)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

int((cos(c + d*x)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cos (c+d x) (A+B \sec (c+d x))}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )+1}d x \right ) a \right )}{a} \] Input:

int(cos(d*x+c)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*cos(c + d*x)*sec(c + d*x))/(sec(c + 
d*x) + 1),x)*b + int((sqrt(sec(c + d*x) + 1)*cos(c + d*x))/(sec(c + d*x) + 
 1),x)*a))/a