\(\int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [152]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 216 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {(11 A-15 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(65 A-93 B) \tan (c+d x)}{15 a d \sqrt {a+a \sec (c+d x)}}-\frac {(5 A-9 B) \sec ^2(c+d x) \tan (c+d x)}{10 a d \sqrt {a+a \sec (c+d x)}}+\frac {(35 A-39 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{30 a^2 d} \] Output:

1/4*(11*A-15*B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/ 
2))*2^(1/2)/a^(3/2)/d+1/2*(A-B)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+c)) 
^(3/2)-1/15*(65*A-93*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)-1/10*(5*A-9* 
B)*sec(d*x+c)^2*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(1/2)+1/30*(35*A-39*B)*(a+ 
a*sec(d*x+c))^(1/2)*tan(d*x+c)/a^2/d
 

Mathematica [A] (verified)

Time = 1.63 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.74 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (15 \sqrt {2} (11 A-15 B) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)+\sqrt {1-\sec (c+d x)} \left (-95 A+147 B-12 (5 A-9 B) \sec (c+d x)+4 (5 A-3 B) \sec ^2(c+d x)+12 B \sec ^3(c+d x)\right )\right ) \tan (c+d x)}{30 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2) 
,x]
 

Output:

((15*Sqrt[2]*(11*A - 15*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c 
+ d*x)/2]^2*Sec[c + d*x] + Sqrt[1 - Sec[c + d*x]]*(-95*A + 147*B - 12*(5*A 
 - 9*B)*Sec[c + d*x] + 4*(5*A - 3*B)*Sec[c + d*x]^2 + 12*B*Sec[c + d*x]^3) 
)*Tan[c + d*x])/(30*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 1.35 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 4507, 27, 3042, 4509, 27, 3042, 4498, 27, 3042, 4489, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^4 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int \frac {\sec ^3(c+d x) (6 a (A-B)-a (5 A-9 B) \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^3(c+d x) (6 a (A-B)-a (5 A-9 B) \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (6 a (A-B)-a (5 A-9 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4509

\(\displaystyle \frac {\frac {2 \int -\frac {\sec ^2(c+d x) \left (4 a^2 (5 A-9 B)-a^2 (35 A-39 B) \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\sec ^2(c+d x) \left (4 a^2 (5 A-9 B)-a^2 (35 A-39 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (4 a^2 (5 A-9 B)-a^2 (35 A-39 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {-\frac {\frac {2 \int -\frac {\sec (c+d x) \left (a^3 (35 A-39 B)-2 a^3 (65 A-93 B) \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {-\frac {\int \frac {\sec (c+d x) \left (a^3 (35 A-39 B)-2 a^3 (65 A-93 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (a^3 (35 A-39 B)-2 a^3 (65 A-93 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {-\frac {-\frac {15 a^3 (11 A-15 B) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx-\frac {4 a^3 (65 A-93 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {-\frac {15 a^3 (11 A-15 B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {4 a^3 (65 A-93 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {-\frac {-\frac {-\frac {30 a^3 (11 A-15 B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {4 a^3 (65 A-93 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {-\frac {-\frac {\frac {15 \sqrt {2} a^{5/2} (11 A-15 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a^3 (65 A-93 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (35 A-39 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{5 a}-\frac {2 a (5 A-9 B) \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x]
 

Output:

((A - B)*Sec[c + d*x]^3*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) + ( 
(-2*a*(5*A - 9*B)*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d*x 
]]) - ((-2*a*(35*A - 39*B)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) - 
((15*Sqrt[2]*a^(5/2)*(11*A - 15*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]* 
Sqrt[a + a*Sec[c + d*x]])])/d - (4*a^3*(65*A - 93*B)*Tan[c + d*x])/(d*Sqrt 
[a + a*Sec[c + d*x]]))/(3*a))/(5*a))/(4*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4509
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m + n))), 
 x] + Simp[d/(b*(m + n))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 
 1)*Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& GtQ[n, 1]
 
Maple [A] (verified)

Time = 1.96 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.28

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (165 \cos \left (d x +c \right )^{2}+330 \cos \left (d x +c \right )+165\right ) \sqrt {2}\, A \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\left (-225 \cos \left (d x +c \right )^{2}-450 \cos \left (d x +c \right )-225\right ) \sqrt {2}\, B \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\left (-190 \cos \left (d x +c \right )^{2}-120 \cos \left (d x +c \right )+40\right ) A \tan \left (d x +c \right )+\left (294 \cos \left (d x +c \right )^{3}+216 \cos \left (d x +c \right )^{2}-24 \cos \left (d x +c \right )+24\right ) B \tan \left (d x +c \right ) \sec \left (d x +c \right )\right )}{60 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right )}\) \(276\)
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (-38 \cos \left (d x +c \right )^{2}-24 \cos \left (d x +c \right )+8\right ) \tan \left (d x +c \right )+\left (33 \cos \left (d x +c \right )^{2}+66 \cos \left (d x +c \right )+33\right ) \sqrt {2}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )}{12 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right )}-\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (-98 \cos \left (d x +c \right )^{3}-72 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )-8\right ) \tan \left (d x +c \right ) \sec \left (d x +c \right )+\left (75 \cos \left (d x +c \right )^{2}+150 \cos \left (d x +c \right )+75\right ) \sqrt {2}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )}{20 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right )}\) \(316\)

Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/60/d/a^2*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)^2+2*cos(d*x+c)+1)*((165*co 
s(d*x+c)^2+330*cos(d*x+c)+165)*2^(1/2)*A*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2 
)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+c)+csc(d*x+c))+(-225*cos 
(d*x+c)^2-450*cos(d*x+c)-225)*2^(1/2)*B*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2) 
*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+c)+csc(d*x+c))+(-190*cos( 
d*x+c)^2-120*cos(d*x+c)+40)*A*tan(d*x+c)+(294*cos(d*x+c)^3+216*cos(d*x+c)^ 
2-24*cos(d*x+c)+24)*B*tan(d*x+c)*sec(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 504, normalized size of antiderivative = 2.33 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [\frac {15 \, \sqrt {2} {\left ({\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (-\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (95 \, A - 147 \, B\right )} \cos \left (d x + c\right )^{3} + 12 \, {\left (5 \, A - 9 \, B\right )} \cos \left (d x + c\right )^{2} - 4 \, {\left (5 \, A - 3 \, B\right )} \cos \left (d x + c\right ) - 12 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{120 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}, -\frac {15 \, \sqrt {2} {\left ({\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{4} + 2 \, {\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{3} + {\left (11 \, A - 15 \, B\right )} \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, {\left ({\left (95 \, A - 147 \, B\right )} \cos \left (d x + c\right )^{3} + 12 \, {\left (5 \, A - 9 \, B\right )} \cos \left (d x + c\right )^{2} - 4 \, {\left (5 \, A - 3 \, B\right )} \cos \left (d x + c\right ) - 12 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{60 \, {\left (a^{2} d \cos \left (d x + c\right )^{4} + 2 \, a^{2} d \cos \left (d x + c\right )^{3} + a^{2} d \cos \left (d x + c\right )^{2}\right )}}\right ] \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorith 
m="fricas")
 

Output:

[1/120*(15*sqrt(2)*((11*A - 15*B)*cos(d*x + c)^4 + 2*(11*A - 15*B)*cos(d*x 
 + c)^3 + (11*A - 15*B)*cos(d*x + c)^2)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*co 
s(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1) 
) - 4*((95*A - 147*B)*cos(d*x + c)^3 + 12*(5*A - 9*B)*cos(d*x + c)^2 - 4*( 
5*A - 3*B)*cos(d*x + c) - 12*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si 
n(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x 
 + c)^2), -1/60*(15*sqrt(2)*((11*A - 15*B)*cos(d*x + c)^4 + 2*(11*A - 15*B 
)*cos(d*x + c)^3 + (11*A - 15*B)*cos(d*x + c)^2)*sqrt(a)*arctan(sqrt(2)*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) 
 + 2*((95*A - 147*B)*cos(d*x + c)^3 + 12*(5*A - 9*B)*cos(d*x + c)^2 - 4*(5 
*A - 3*B)*cos(d*x + c) - 12*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin 
(d*x + c))/(a^2*d*cos(d*x + c)^4 + 2*a^2*d*cos(d*x + c)^3 + a^2*d*cos(d*x 
+ c)^2)]
 

Sympy [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sec(c + d*x)**4/(a*(sec(c + d*x) + 1))**(3/2 
), x)
 

Maxima [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{4}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorith 
m="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^4/(a*sec(d*x + c) + a)^(3/2), 
x)
 

Giac [A] (verification not implemented)

Time = 0.81 (sec) , antiderivative size = 277, normalized size of antiderivative = 1.28 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\frac {15 \, \sqrt {2} {\left (11 \, A - 15 \, B\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {{\left ({\left ({\left (\frac {15 \, \sqrt {2} {\left (A a^{3} - B a^{3}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {\sqrt {2} {\left (245 \, A a^{3} - 381 \, B a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {5 \, \sqrt {2} {\left (73 \, A a^{3} - 105 \, B a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {15 \, \sqrt {2} {\left (9 \, A a^{3} - 17 \, B a^{3}\right )}}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}}{60 \, d} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algorith 
m="giac")
 

Output:

-1/60*(15*sqrt(2)*(11*A - 15*B)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + s 
qrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*sgn(cos(d*x + c))) - (((1 
5*sqrt(2)*(A*a^3 - B*a^3)*tan(1/2*d*x + 1/2*c)^2/(a^2*sgn(cos(d*x + c))) - 
 sqrt(2)*(245*A*a^3 - 381*B*a^3)/(a^2*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/ 
2*c)^2 + 5*sqrt(2)*(73*A*a^3 - 105*B*a^3)/(a^2*sgn(cos(d*x + c))))*tan(1/2 
*d*x + 1/2*c)^2 - 15*sqrt(2)*(9*A*a^3 - 17*B*a^3)/(a^2*sgn(cos(d*x + c)))) 
*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d* 
x + 1/2*c)^2 + a)))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(3/2)),x)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{5}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**5)/(sec(c + d*x)**2 + 
2*sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**4)/(s 
ec(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*a))/a**2