\(\int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [160]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F(-1)]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 216 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {(75 A-163 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {(A-B) \sec ^3(c+d x) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(9 A-17 B) \sec ^2(c+d x) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {(93 A-197 B) \tan (c+d x)}{24 a^2 d \sqrt {a+a \sec (c+d x)}}-\frac {(39 A-95 B) \sqrt {a+a \sec (c+d x)} \tan (c+d x)}{48 a^3 d} \] Output:

-1/32*(75*A-163*B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^ 
(1/2))*2^(1/2)/a^(5/2)/d+1/4*(A-B)*sec(d*x+c)^3*tan(d*x+c)/d/(a+a*sec(d*x+ 
c))^(5/2)+1/16*(9*A-17*B)*sec(d*x+c)^2*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/ 
2)+1/24*(93*A-197*B)*tan(d*x+c)/a^2/d/(a+a*sec(d*x+c))^(1/2)-1/48*(39*A-95 
*B)*(a+a*sec(d*x+c))^(1/2)*tan(d*x+c)/a^3/d
 

Mathematica [A] (verified)

Time = 1.85 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.75 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\left (-6 \sqrt {2} (75 A-163 B) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+\sqrt {1-\sec (c+d x)} \left (147 A-299 B+(255 A-503 B) \sec (c+d x)+32 (3 A-5 B) \sec ^2(c+d x)+32 B \sec ^3(c+d x)\right )\right ) \tan (c+d x)}{48 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \] Input:

Integrate[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2) 
,x]
 

Output:

((-6*Sqrt[2]*(75*A - 163*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c 
 + d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 - Sec[c + d*x]]*(147*A - 299*B + (255 
*A - 503*B)*Sec[c + d*x] + 32*(3*A - 5*B)*Sec[c + d*x]^2 + 32*B*Sec[c + d* 
x]^3))*Tan[c + d*x])/(48*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^( 
5/2))
 

Rubi [A] (verified)

Time = 1.40 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.07, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 4507, 27, 3042, 4507, 27, 3042, 4498, 27, 3042, 4489, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^4 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int \frac {\sec ^3(c+d x) (6 a (A-B)-a (3 A-11 B) \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^3(c+d x) (6 a (A-B)-a (3 A-11 B) \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^3 \left (6 a (A-B)-a (3 A-11 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\frac {\int \frac {\sec ^2(c+d x) \left (4 a^2 (9 A-17 B)-a^2 (39 A-95 B) \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sec ^2(c+d x) \left (4 a^2 (9 A-17 B)-a^2 (39 A-95 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (4 a^2 (9 A-17 B)-a^2 (39 A-95 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4498

\(\displaystyle \frac {\frac {\frac {2 \int -\frac {\sec (c+d x) \left (a^3 (39 A-95 B)-2 a^3 (93 A-197 B) \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {-\frac {\int \frac {\sec (c+d x) \left (a^3 (39 A-95 B)-2 a^3 (93 A-197 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {-\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (a^3 (39 A-95 B)-2 a^3 (93 A-197 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4489

\(\displaystyle \frac {\frac {-\frac {3 a^3 (75 A-163 B) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx-\frac {4 a^3 (93 A-197 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {-\frac {3 a^3 (75 A-163 B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {4 a^3 (93 A-197 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {-\frac {-\frac {6 a^3 (75 A-163 B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {4 a^3 (93 A-197 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {-\frac {\frac {3 \sqrt {2} a^{5/2} (75 A-163 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a^3 (93 A-197 B) \tan (c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{3 a}-\frac {2 a (39 A-95 B) \tan (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}}{4 a^2}+\frac {a (9 A-17 B) \tan (c+d x) \sec ^2(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}+\frac {(A-B) \tan (c+d x) \sec ^3(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

Input:

Int[(Sec[c + d*x]^4*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

((A - B)*Sec[c + d*x]^3*Tan[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) + ( 
(a*(9*A - 17*B)*Sec[c + d*x]^2*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/ 
2)) + ((-2*a*(39*A - 95*B)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(3*d) - 
((3*Sqrt[2]*a^(5/2)*(75*A - 163*B)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]* 
Sqrt[a + a*Sec[c + d*x]])])/d - (4*a^3*(93*A - 197*B)*Tan[c + d*x])/(d*Sqr 
t[a + a*Sec[c + d*x]]))/(3*a))/(4*a^2))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4489
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*(( 
a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b*(m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B 
, e, f, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b 
*(m + 1), 0] &&  !LtQ[m, -2^(-1)]
 

rule 4498
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]* 
((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))   Int 
[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B) 
*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a 
*B, 0] &&  !LtQ[m, -1]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 
Maple [A] (verified)

Time = 2.00 (sec) , antiderivative size = 300, normalized size of antiderivative = 1.39

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (-225 \cos \left (d x +c \right )^{3}-675 \cos \left (d x +c \right )^{2}-675 \cos \left (d x +c \right )-225\right ) \sqrt {2}\, A \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\left (489 \cos \left (d x +c \right )^{3}+1467 \cos \left (d x +c \right )^{2}+1467 \cos \left (d x +c \right )+489\right ) \sqrt {2}\, B \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (294 \cos \left (d x +c \right )^{2}+510 \cos \left (d x +c \right )+192\right ) A +\left (-598 \cos \left (d x +c \right )^{3}-1006 \cos \left (d x +c \right )^{2}-320 \cos \left (d x +c \right )+64\right ) B \tan \left (d x +c \right )\right )}{96 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right )}\) \(300\)
parts \(\frac {A \left (-\frac {\left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}}{16}-\frac {17 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}}{32}-\frac {75 \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{32}-\frac {83 \cot \left (d x +c \right )}{32}+\frac {83 \csc \left (d x +c \right )}{32}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \,a^{3}}+\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (-598 \cos \left (d x +c \right )^{3}-1006 \cos \left (d x +c \right )^{2}-320 \cos \left (d x +c \right )+64\right ) \tan \left (d x +c \right )+\left (489 \cos \left (d x +c \right )^{3}+1467 \cos \left (d x +c \right )^{2}+1467 \cos \left (d x +c \right )+489\right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{96 d \,a^{3} \left (\cos \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )+1\right )}\) \(320\)

Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/96/d/a^3*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)^3+3*cos(d*x+c)^2+3*cos(d*x 
+c)+1)*((-225*cos(d*x+c)^3-675*cos(d*x+c)^2-675*cos(d*x+c)-225)*2^(1/2)*A* 
(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2) 
-cot(d*x+c)+csc(d*x+c))+(489*cos(d*x+c)^3+1467*cos(d*x+c)^2+1467*cos(d*x+c 
)+489)*2^(1/2)*B*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+c 
os(d*x+c)))^(1/2)-cot(d*x+c)+csc(d*x+c))+sin(d*x+c)*(294*cos(d*x+c)^2+510* 
cos(d*x+c)+192)*A+(-598*cos(d*x+c)^3-1006*cos(d*x+c)^2-320*cos(d*x+c)+64)* 
B*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 557, normalized size of antiderivative = 2.58 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="fricas")
 

Output:

[1/192*(3*sqrt(2)*((75*A - 163*B)*cos(d*x + c)^4 + 3*(75*A - 163*B)*cos(d* 
x + c)^3 + 3*(75*A - 163*B)*cos(d*x + c)^2 + (75*A - 163*B)*cos(d*x + c))* 
sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c 
os(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos 
(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((147*A - 299*B)*cos(d*x + c)^3 + ( 
255*A - 503*B)*cos(d*x + c)^2 + 32*(3*A - 5*B)*cos(d*x + c) + 32*B)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^4 + 3* 
a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c)), 1/96* 
(3*sqrt(2)*((75*A - 163*B)*cos(d*x + c)^4 + 3*(75*A - 163*B)*cos(d*x + c)^ 
3 + 3*(75*A - 163*B)*cos(d*x + c)^2 + (75*A - 163*B)*cos(d*x + c))*sqrt(a) 
*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt 
(a)*sin(d*x + c))) + 2*((147*A - 299*B)*cos(d*x + c)^3 + (255*A - 503*B)*c 
os(d*x + c)^2 + 32*(3*A - 5*B)*cos(d*x + c) + 32*B)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + 
c)^3 + 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))]
 

Sympy [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sec(c + d*x)**4/(a*(sec(c + d*x) + 1))**(5/2 
), x)
 

Maxima [F(-1)]

Timed out. \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [A] (verification not implemented)

Time = 0.77 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.28 \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=-\frac {\frac {{\left ({\left (3 \, {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} - B a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (15 \, A a^{5} - 23 \, B a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - \frac {4 \, \sqrt {2} {\left (75 \, A a^{5} - 167 \, B a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \frac {3 \, \sqrt {2} {\left (83 \, A a^{5} - 155 \, B a^{5}\right )}}{a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} - \frac {3 \, \sqrt {2} {\left (75 \, A - 163 \, B\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{96 \, d} \] Input:

integrate(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="giac")
 

Output:

-1/96*(((3*(2*sqrt(2)*(A*a^5 - B*a^5)*tan(1/2*d*x + 1/2*c)^2/(a^6*sgn(cos( 
d*x + c))) + sqrt(2)*(15*A*a^5 - 23*B*a^5)/(a^6*sgn(cos(d*x + c))))*tan(1/ 
2*d*x + 1/2*c)^2 - 4*sqrt(2)*(75*A*a^5 - 167*B*a^5)/(a^6*sgn(cos(d*x + c)) 
))*tan(1/2*d*x + 1/2*c)^2 + 3*sqrt(2)*(83*A*a^5 - 155*B*a^5)/(a^6*sgn(cos( 
d*x + c))))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)*sqrt(-a*t 
an(1/2*d*x + 1/2*c)^2 + a)) - 3*sqrt(2)*(75*A - 163*B)*log(abs(-sqrt(-a)*t 
an(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a^2* 
sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^4\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(5/2)),x)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^4*(a + a/cos(c + d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^4(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{5}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{4}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{3}} \] Input:

int(sec(d*x+c)^4*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**5)/(sec(c + d*x)**3 + 
3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x) + 1) 
*sec(c + d*x)**4)/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 
1),x)*a))/a**3