\(\int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx\) [162]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 126 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {(5 A+19 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {(A-B) \tan (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}+\frac {(5 A-13 B) \tan (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \] Output:

1/32*(5*A+19*B)*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/ 
2))*2^(1/2)/a^(5/2)/d-1/4*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)+1/16*( 
5*A-13*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)
 

Mathematica [A] (verified)

Time = 1.11 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.04 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\left (2 \sqrt {2} (5 A+19 B) \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x)+\sqrt {1-\sec (c+d x)} (A-9 B+(5 A-13 B) \sec (c+d x))\right ) \tan (c+d x)}{16 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \] Input:

Integrate[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2) 
,x]
 

Output:

((2*Sqrt[2]*(5*A + 19*B)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*Cos[(c + 
d*x)/2]^4*Sec[c + d*x]^2 + Sqrt[1 - Sec[c + d*x]]*(A - 9*B + (5*A - 13*B)* 
Sec[c + d*x]))*Tan[c + d*x])/(16*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + 
d*x]))^(5/2))
 

Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.242, Rules used = {3042, 4496, 27, 3042, 4488, 3042, 4282, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4496

\(\displaystyle -\frac {\int -\frac {\sec (c+d x) (5 a (A-B)+8 a B \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x) (5 a (A-B)+8 a B \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (5 a (A-B)+8 a B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4488

\(\displaystyle \frac {\frac {1}{4} (5 A+19 B) \int \frac {\sec (c+d x)}{\sqrt {\sec (c+d x) a+a}}dx+\frac {a (5 A-13 B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} (5 A+19 B) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {a (5 A-13 B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4282

\(\displaystyle \frac {\frac {a (5 A-13 B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}-\frac {(5 A+19 B) \int \frac {1}{\frac {a^2 \tan ^2(c+d x)}{\sec (c+d x) a+a}+2 a}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{2 d}}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {(5 A+19 B) \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {a (5 A-13 B) \tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {(A-B) \tan (c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

Input:

Int[(Sec[c + d*x]^2*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(5/2),x]
 

Output:

-1/4*((A - B)*Tan[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) + (((5*A + 19*B 
)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sq 
rt[2]*Sqrt[a]*d) + (a*(5*A - 13*B)*Tan[c + d*x])/(2*d*(a + a*Sec[c + d*x]) 
^(3/2)))/(8*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4282
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2/f   Subst[Int[1/(2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[ 
a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4488
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - a*B)*Cot[e + 
f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[(a*B*m + A*b*(m + 
1))/(a*b*(2*m + 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] 
 /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]
 

rule 4496
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*( 
csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot 
[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(b^2*(2*m + 
 1))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b 
*B*(2*m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && Ne 
Q[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(275\) vs. \(2(107)=214\).

Time = 1.73 (sec) , antiderivative size = 276, normalized size of antiderivative = 2.19

method result size
default \(\frac {\left (\left (5 \cos \left (d x +c \right )^{3}+15 \cos \left (d x +c \right )^{2}+15 \cos \left (d x +c \right )+5\right ) A \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\left (19 \cos \left (d x +c \right )^{3}+57 \cos \left (d x +c \right )^{2}+57 \cos \left (d x +c \right )+19\right ) B \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (2 \cos \left (d x +c \right )+10\right ) A +\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (-18 \cos \left (d x +c \right )-26\right ) B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{32 d \,a^{3} \left (1+\cos \left (d x +c \right )\right ) \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right )}\) \(276\)
parts \(-\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\frac {4 \sqrt {2}\, \left (\cos \left (d x +c \right )-1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cot \left (d x +c \right )}{1+\cos \left (d x +c \right )}+5 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-5 \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{32 d \,a^{3}}+\frac {B \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (2 \left (1-\cos \left (d x +c \right )\right )^{3} \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \csc \left (d x +c \right )^{3}+11 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+19 \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )\right )}{32 d \,a^{3}}\) \(327\)

Input:

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNV 
ERBOSE)
 

Output:

1/32/d/a^3*((5*cos(d*x+c)^3+15*cos(d*x+c)^2+15*cos(d*x+c)+5)*A*(-2*cos(d*x 
+c)/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+ 
c)+csc(d*x+c))+(19*cos(d*x+c)^3+57*cos(d*x+c)^2+57*cos(d*x+c)+19)*B*(-2*co 
s(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot 
(d*x+c)+csc(d*x+c))+sin(d*x+c)*cos(d*x+c)*(2*cos(d*x+c)+10)*A+sin(d*x+c)*c 
os(d*x+c)*(-18*cos(d*x+c)-26)*B)*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/( 
cos(d*x+c)^2+2*cos(d*x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 475, normalized size of antiderivative = 3.77 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [-\frac {\sqrt {2} {\left ({\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left ({\left (A - 9 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 13 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {\sqrt {2} {\left ({\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 19 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 19 \, B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left ({\left (A - 9 \, B\right )} \cos \left (d x + c\right )^{2} + {\left (5 \, A - 13 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="fricas")
 

Output:

[-1/64*(sqrt(2)*((5*A + 19*B)*cos(d*x + c)^3 + 3*(5*A + 19*B)*cos(d*x + c) 
^2 + 3*(5*A + 19*B)*cos(d*x + c) + 5*A + 19*B)*sqrt(-a)*log((2*sqrt(2)*sqr 
t(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 
3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c 
) + 1)) - 4*((A - 9*B)*cos(d*x + c)^2 + (5*A - 13*B)*cos(d*x + c))*sqrt((a 
*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a 
^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), -1/32*(sqrt(2)*((5*A 
+ 19*B)*cos(d*x + c)^3 + 3*(5*A + 19*B)*cos(d*x + c)^2 + 3*(5*A + 19*B)*co 
s(d*x + c) + 5*A + 19*B)*sqrt(a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/ 
cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*((A - 9*B)*cos(d*x 
+ c)^2 + (5*A - 13*B)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c) 
)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*c 
os(d*x + c) + a^3*d)]
 

Sympy [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(5/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(5/2 
), x)
 

Maxima [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sec \left (d x + c\right )^{2}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*sec(d*x + c)^2/(a*sec(d*x + c) + a)^(5/2), 
x)
 

Giac [A] (verification not implemented)

Time = 0.91 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.35 \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\frac {2 \, \sqrt {2} {\left (A a^{5} - B a^{5}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} {\left (3 \, A a^{5} - 11 \, B a^{5}\right )}}{a^{8} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \frac {\sqrt {2} {\left (5 \, A + 19 \, B\right )} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{32 \, d} \] Input:

integrate(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x, algorith 
m="giac")
 

Output:

1/32*(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*(2*sqrt(2)*(A*a^5 - B*a^5)*tan(1 
/2*d*x + 1/2*c)^2/(a^8*sgn(cos(d*x + c))) + sqrt(2)*(3*A*a^5 - 11*B*a^5)/( 
a^8*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c) - sqrt(2)*(5*A + 19*B)*log(ab 
s(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/( 
sqrt(-a)*a^2*sgn(cos(d*x + c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)),x)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {\sec ^2(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{3}+3 \sec \left (d x +c \right )^{2}+3 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{3}} \] Input:

int(sec(d*x+c)^2*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(5/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3)/(sec(c + d*x)**3 + 
3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x) + 1) 
*sec(c + d*x)**2)/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 
1),x)*a))/a**3