\(\int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [185]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 172 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {6 a (A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 a (5 A+7 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}+\frac {2 a (A+B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (5 A+7 B) \sin (c+d x)}{21 d \sqrt {\sec (c+d x)}} \] Output:

6/5*a*(A+B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x 
+c)^(1/2)/d+2/21*a*(5*A+7*B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2* 
c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/7*a*A*sin(d*x+c)/d/sec(d*x+c)^(5/2)+2/5*a* 
(A+B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)+2/21*a*(5*A+7*B)*sin(d*x+c)/d/sec(d*x+ 
c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 1.49 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.66 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a \sqrt {\sec (c+d x)} \left (252 (A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 (5 A+7 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(65 A+70 B+42 (A+B) \cos (c+d x)+15 A \cos (2 (c+d x))) \sin (2 (c+d x))\right )}{210 d} \] Input:

Integrate[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x 
]
 

Output:

(a*Sqrt[Sec[c + d*x]]*(252*(A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/ 
2, 2] + 20*(5*A + 7*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (65* 
A + 70*B + 42*(A + B)*Cos[c + d*x] + 15*A*Cos[2*(c + d*x)])*Sin[2*(c + d*x 
)]))/(210*d)
 

Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.99, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {3042, 4484, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4484

\(\displaystyle \frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}-\frac {2}{7} \int -\frac {7 a (A+B)+a (5 A+7 B) \sec (c+d x)}{2 \sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {7 a (A+B)+a (5 A+7 B) \sec (c+d x)}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {7 a (A+B)+a (5 A+7 B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x)}dx+a (5 A+7 B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+a (5 A+7 B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \left (\frac {3}{5} \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+a (5 A+7 B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \left (\frac {3}{5} \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+a (5 A+7 B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+a (5 A+7 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (7 a (A+B) \left (\frac {3}{5} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\right )+a (5 A+7 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{7} \left (a (5 A+7 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+7 a (A+B) \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{7} \left (a (5 A+7 B) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )+7 a (A+B) \left (\frac {2 \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {6 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[((a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x]
 

Output:

(2*a*A*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + (7*a*(A + B)*((6*Sqrt[Cos[ 
c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*Sin[c + 
 d*x])/(5*d*Sec[c + d*x]^(3/2))) + a*(5*A + 7*B)*((2*Sqrt[Cos[c + d*x]]*El 
lipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d* 
Sqrt[Sec[c + d*x]])))/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4484
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*a*Cot[e + 
f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n)   Int[(d*Csc[e + f*x])^( 
n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(382\) vs. \(2(151)=302\).

Time = 13.62 (sec) , antiderivative size = 383, normalized size of antiderivative = 2.23

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (240 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\left (-528 A -168 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (448 A +308 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-122 A -112 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+25 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-63 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}+35 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-63 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{105 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(383\)
parts \(-\frac {2 \left (A a +B a \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 A a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (48 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}-120 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}+128 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}-72 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+5 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{21 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 B a \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(590\)

Input:

int((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RETURNVER 
BOSE)
 

Output:

-2/105*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(240*A*co 
s(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^8+(-528*A-168*B)*sin(1/2*d*x+1/2*c)^6* 
cos(1/2*d*x+1/2*c)+(448*A+308*B)*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+( 
-122*A-112*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+25*A*EllipticF(cos(1 
/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)-63*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+35*B*EllipticF(cos(1/2*d*x+1/2*c 
),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-6 
3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2* 
sin(1/2*d*x+1/2*c)^2-1)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c) 
^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.09 \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {-5 i \, \sqrt {2} {\left (5 \, A + 7 \, B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} {\left (5 \, A + 7 \, B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 63 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 63 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (15 \, A a \cos \left (d x + c\right )^{3} + 21 \, {\left (A + B\right )} a \cos \left (d x + c\right )^{2} + 5 \, {\left (5 \, A + 7 \, B\right )} a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d} \] Input:

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm= 
"fricas")
 

Output:

1/105*(-5*I*sqrt(2)*(5*A + 7*B)*a*weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c)) + 5*I*sqrt(2)*(5*A + 7*B)*a*weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c)) + 63*I*sqrt(2)*(A + B)*a*weierstrassZeta(-4, 
 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 63*I*sqrt 
(2)*(A + B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + 
c) - I*sin(d*x + c))) + 2*(15*A*a*cos(d*x + c)^3 + 21*(A + B)*a*cos(d*x + 
c)^2 + 5*(5*A + 7*B)*a*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=a \left (\int \frac {A}{\sec ^{\frac {7}{2}}{\left (c + d x \right )}}\, dx + \int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx\right ) \] Input:

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)
 

Output:

a*(Integral(A/sec(c + d*x)**(7/2), x) + Integral(A/sec(c + d*x)**(5/2), x) 
 + Integral(B/sec(c + d*x)**(5/2), x) + Integral(B/sec(c + d*x)**(3/2), x) 
)
 

Maxima [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)
 

Giac [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}}{\sec \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algorithm= 
"giac")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)/sec(d*x + c)^(7/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(7/2),x)
 

Output:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x)))/(1/cos(c + d*x))^(7/2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x)) (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{4}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x)
 

Output:

a*(int(sqrt(sec(c + d*x))/sec(c + d*x)**4,x)*a + int(sqrt(sec(c + d*x))/se 
c(c + d*x)**3,x)*a + int(sqrt(sec(c + d*x))/sec(c + d*x)**3,x)*b + int(sqr 
t(sec(c + d*x))/sec(c + d*x)**2,x)*b)