\(\int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx\) [206]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 164 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=-\frac {3 (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A-3 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}+\frac {(5 A-3 B) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \] Output:

-3*(A-B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c) 
^(1/2)/a/d+1/3*(5*A-3*B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^ 
(1/2))*sec(d*x+c)^(1/2)/a/d+1/3*(5*A-3*B)*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)- 
(A-B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.32 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.41 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {e^{-i d x} \cos \left (\frac {1}{2} (c+d x)\right ) \sec ^{\frac {3}{2}}(c+d x) (\cos (d x)+i \sin (d x)) \left (2 (5 A-3 B) \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+3 i (A-B) e^{\frac {1}{2} i (c+d x)} \left (1+e^{i (c+d x)}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+2 \cos (c+d x) \left (-9 i (A-B) \cos \left (\frac {1}{2} (c+d x)\right )+(5 A-3 B+2 A \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )\right )}{3 a d (1+\sec (c+d x))} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x 
]
 

Output:

(Cos[(c + d*x)/2]*Sec[c + d*x]^(3/2)*(Cos[d*x] + I*Sin[d*x])*(2*(5*A - 3*B 
)*Cos[(c + d*x)/2]*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + (3*I)*(A 
 - B)*E^((I/2)*(c + d*x))*(1 + E^(I*(c + d*x)))*Sqrt[1 + E^((2*I)*(c + d*x 
))]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + 2*Cos[c + d*x 
]*((-9*I)*(A - B)*Cos[(c + d*x)/2] + (5*A - 3*B + 2*A*Cos[c + d*x])*Sin[(c 
 + d*x)/2])))/(3*a*d*E^(I*d*x)*(1 + Sec[c + d*x]))
 

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.98, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 4508, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\int \frac {a (5 A-3 B)-3 a (A-B) \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (5 A-3 B)-3 a (A-B) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (5 A-3 B)-3 a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {a (5 A-3 B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx-3 a (A-B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (5 A-3 B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-\frac {6 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {a (5 A-3 B) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )-\frac {6 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

Input:

Int[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])),x]
 

Output:

-(((A - B)*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x]))) + (( 
-6*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x 
]])/d + a*(5*A - 3*B)*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqr 
t[Sec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/(2*a^ 
2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [A] (verified)

Time = 4.20 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.60

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \left (5 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-8 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (18 A -6 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-7 A +3 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(262\)

Input:

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

-1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+ 
1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(5*A* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2))-3*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+ 
1/2*c),2^(1/2)))-8*A*sin(1/2*d*x+1/2*c)^6+(18*A-6*B)*sin(1/2*d*x+1/2*c)^4+ 
(-7*A+3*B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2* 
c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^ 
2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.59 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {{\left (\sqrt {2} {\left (-5 i \, A + 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-5 i \, A + 3 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (5 i \, A - 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (5 i \, A - 3 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (2 \, A \cos \left (d x + c\right )^{2} + {\left (5 \, A - 3 \, B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm= 
"fricas")
 

Output:

1/6*((sqrt(2)*(-5*I*A + 3*I*B)*cos(d*x + c) + sqrt(2)*(-5*I*A + 3*I*B))*we 
ierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(5*I*A 
- 3*I*B)*cos(d*x + c) + sqrt(2)*(5*I*A - 3*I*B))*weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(I*A - I*B)*cos(d*x + c) + s 
qrt(2)*(I*A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos( 
d*x + c) + I*sin(d*x + c))) - 9*(sqrt(2)*(-I*A + I*B)*cos(d*x + c) + sqrt( 
2)*(-I*A + I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
 + c) - I*sin(d*x + c))) + 2*(2*A*cos(d*x + c)^2 + (5*A - 3*B)*cos(d*x + c 
))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {\int \frac {A}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a} \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c)),x)
 

Output:

(Integral(A/(sec(c + d*x)**(5/2) + sec(c + d*x)**(3/2)), x) + Integral(B*s 
ec(c + d*x)/(sec(c + d*x)**(5/2) + sec(c + d*x)**(3/2)), x))/a
 

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), 
x)
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(3/2)),x)
 

Output:

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))*(1/cos(c + d*x))^(3/2)), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x \right ) b}{a} \] Input:

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c)),x)
 

Output:

(int(sqrt(sec(c + d*x))/(sec(c + d*x)**3 + sec(c + d*x)**2),x)*a + int(sqr 
t(sec(c + d*x))/(sec(c + d*x)**2 + sec(c + d*x)),x)*b)/a