\(\int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [227]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 76 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 \sqrt {a} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a A \sqrt {\sec (c+d x)} \sin (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \] Output:

2*a^(1/2)*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2*a*A*sec 
(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.29 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.09 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {2 a \left (A \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sin (c+d x)-B \arcsin \left (\sqrt {\sec (c+d x)}\right ) \tan (c+d x)\right )}{d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x 
]],x]
 

Output:

(2*a*(A*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sin[c + d*x] - B*ArcSin[ 
Sqrt[Sec[c + d*x]]]*Tan[c + d*x]))/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + S 
ec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a \sec (c+d x)+a} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4503

\(\displaystyle B \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle B \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 B \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}+\frac {2 \sqrt {a} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}\)

Input:

Int[(Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x]
 

Output:

(2*Sqrt[a]*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
 (2*a*A*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(150\) vs. \(2(66)=132\).

Time = 1.70 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.99

method result size
default \(\frac {\left (\left (2 \csc \left (d x +c \right )-2 \cot \left (d x +c \right )\right ) A -\frac {B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )}{2}-\frac {B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )}{2}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \sqrt {\sec \left (d x +c \right )}}\) \(151\)
parts \(-\frac {2 A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{d \sqrt {\sec \left (d x +c \right )}}-\frac {B \left (\arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-\arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \cos \left (d x +c \right )}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(168\)

Input:

int((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/d*((2*csc(d*x+c)-2*cot(d*x+c))*A-1/2*B*(-2/(1+cos(d*x+c)))^(1/2)*2^(1/2) 
*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))-1/2*B*(-2 
/(1+cos(d*x+c)))^(1/2)*2^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1 
+cos(d*x+c)))^(1/2)))*(a*(1+sec(d*x+c)))^(1/2)/sec(d*x+c)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 133 vs. \(2 (66) = 132\).

Time = 0.11 (sec) , antiderivative size = 304, normalized size of antiderivative = 4.00 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\left [\frac {4 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (B \cos \left (d x + c\right ) + B\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {2 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (B \cos \left (d x + c\right ) + B\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right )}{d \cos \left (d x + c\right ) + d}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="fricas")
 

Output:

[1/2*(4*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d 
*x + c) + (B*cos(d*x + c) + B)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x 
 + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) 
 + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 
 + cos(d*x + c)^2)))/(d*cos(d*x + c) + d), (2*A*sqrt((a*cos(d*x + c) + a)/ 
cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*cos(d*x + c) + B)*sqrt( 
-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x 
+ c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))))/(d*cos(d*x + 
 c) + d)]
 

Sympy [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )}\right )}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(1/2),x)
 

Output:

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))/sqrt(sec(c + d*x) 
), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 262 vs. \(2 (66) = 132\).

Time = 0.26 (sec) , antiderivative size = 262, normalized size of antiderivative = 3.45 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {4 \, \sqrt {2} A \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + B \sqrt {a} {\left (\log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )\right )}}{2 \, d} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="maxima")
 

Output:

1/2*(4*sqrt(2)*A*sqrt(a)*sin(1/2*d*x + 1/2*c) + B*sqrt(a)*(log(2*cos(1/2*d 
*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) 
+ 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*s 
in(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2 
*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) 
^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) 
- log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos( 
1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2)))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (66) = 132\).

Time = 1.05 (sec) , antiderivative size = 163, normalized size of antiderivative = 2.14 \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {\frac {2 \, \sqrt {2} A a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}} + \frac {B a^{\frac {3}{2}} \log \left (\frac {{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}}}{d} \] Input:

integrate((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="giac")
 

Output:

(2*sqrt(2)*A*a*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/2*d*x + 
 1/2*c)^2 + a) + B*a^(3/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt( 
a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)* 
tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*a 
bs(a) - 6*a))*sgn(cos(d*x + c))/abs(a))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/ 
2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x)
 

Output:

sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*a 
 + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*b)