\(\int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\) [233]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 133 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^{3/2} (12 A+7 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (4 A+5 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a B \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d} \] Output:

1/4*a^(3/2)*(12*A+7*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/ 
d+1/4*a^2*(4*A+5*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1 
/2*a*B*sec(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 0.64 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.13 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\frac {a^2 \left (7 B \arcsin \left (\sqrt {1-\sec (c+d x)}\right )-12 A \arcsin \left (\sqrt {\sec (c+d x)}\right )+2 B \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x)+4 A \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}+7 B \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))}\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x 
]),x]
 

Output:

(a^2*(7*B*ArcSin[Sqrt[1 - Sec[c + d*x]]] - 12*A*ArcSin[Sqrt[Sec[c + d*x]]] 
 + 2*B*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2) + 4*A*Sqrt[-((-1 + Sec[c 
+ d*x])*Sec[c + d*x])] + 7*B*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])*Ta 
n[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.73 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.99, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 4506, 27, 3042, 4504, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {1}{2} \int \frac {1}{2} \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (a (4 A+B)+a (4 A+5 B) \sec (c+d x))dx+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a} (a (4 A+B)+a (4 A+5 B) \sec (c+d x))dx+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+B)+a (4 A+5 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4504

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} a (12 A+7 B) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {a^2 (4 A+5 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} a (12 A+7 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {a^2 (4 A+5 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{4} \left (\frac {a^2 (4 A+5 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}-\frac {a (12 A+7 B) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{4} \left (\frac {a^{3/2} (12 A+7 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {a^2 (4 A+5 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}{2 d}\)

Input:

Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]),x]
 

Output:

(a*B*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d) + ((a 
^(3/2)*(12*A + 7*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x] 
]])/d + (a^2*(4*A + 5*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Se 
c[c + d*x]]))/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4504
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*C 
ot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] 
 + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1))   Int[Sqrt[a + b*Csc[e + f* 
x]]*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ 
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && 
!LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(281\) vs. \(2(113)=226\).

Time = 4.34 (sec) , antiderivative size = 282, normalized size of antiderivative = 2.12

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \left (12 A \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+7 B \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+12 A \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+7 B \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+4 A \sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (7 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )\right )}{8 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(282\)
parts \(\frac {A a \sqrt {\sec \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-3 \cos \left (d x +c \right ) \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+3 \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right )}{2 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}+\frac {B a \left (7 \cos \left (d x +c \right )^{2} \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )-7 \cos \left (d x +c \right )^{2} \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+\sin \left (d x +c \right ) \left (7 \cos \left (d x +c \right )+2\right ) \sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}}}{8 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(332\)

Input:

int(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x,method=_RET 
URNVERBOSE)
 

Output:

1/8/d*a*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^(1/2)/(1+cos(d*x+c))/(-1/(1+co 
s(d*x+c)))^(1/2)*(12*A*cos(d*x+c)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1 
/(1+cos(d*x+c)))^(1/2))+7*B*cos(d*x+c)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1 
)/(-1/(1+cos(d*x+c)))^(1/2))+12*A*cos(d*x+c)*arctan(1/2*(cot(d*x+c)-csc(d* 
x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))+7*B*cos(d*x+c)*arctan(1/2*(cot(d*x+c)-c 
sc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))+4*A*2^(1/2)*sin(d*x+c)*(-2/(1+cos( 
d*x+c)))^(1/2)+2^(1/2)*B*(-2/(1+cos(d*x+c)))^(1/2)*(7*sin(d*x+c)+2*tan(d*x 
+c)))
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 407, normalized size of antiderivative = 3.06 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\left [\frac {{\left ({\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left ({\left (4 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {{\left ({\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{2} + {\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left ({\left (4 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \] Input:

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algo 
rithm="fricas")
 

Output:

[1/16*(((12*A + 7*B)*a*cos(d*x + c)^2 + (12*A + 7*B)*a*cos(d*x + c))*sqrt( 
a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos( 
d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqr 
t(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*((4*A + 7*B) 
*a*cos(d*x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
 c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c)), 1/8*(((12*A + 
 7*B)*a*cos(d*x + c)^2 + (12*A + 7*B)*a*cos(d*x + c))*sqrt(-a)*arctan(1/2* 
(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d 
*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*((4*A + 7*B)*a*cos(d*x + 
 c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos 
(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 

Sympy [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(1/2)*(a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3389 vs. \(2 (113) = 226\).

Time = 0.35 (sec) , antiderivative size = 3389, normalized size of antiderivative = 25.48 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algo 
rithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/16*(4*(3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2* 
sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log 
(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d 
*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 
1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*s 
qrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin( 
1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d* 
x + 1/2*c) + 2))*cos(2*d*x + 2*c)^2 + 3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 
2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin( 
1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1 
/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
+ 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt( 
2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*co 
s(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 
1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2 + 4*sqrt( 
2)*a*sin(3/2*d*x + 3/2*c) - 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 2*(2*sqrt(2 
)*a*sin(3/2*d*x + 3/2*c) - 2*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*co 
s(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 
1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2 
*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*s...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 557 vs. \(2 (113) = 226\).

Time = 2.92 (sec) , antiderivative size = 557, normalized size of antiderivative = 4.19 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x, algo 
rithm="giac")
 

Output:

1/8*((12*A*a^(3/2)*sgn(cos(d*x + c)) + 7*B*a^(3/2)*sgn(cos(d*x + c)))*log( 
abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 
- a*(2*sqrt(2) + 3))) - (12*A*a^(3/2)*sgn(cos(d*x + c)) + 7*B*a^(3/2)*sgn( 
cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
+ 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)*(12*(sqrt(a)*tan(1/2* 
d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6*A*a^(5/2)*sgn(cos(d*x 
 + c)) + 7*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + 
 a))^6*B*a^(5/2)*sgn(cos(d*x + c)) - 76*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sq 
rt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*a^(7/2)*sgn(cos(d*x + c)) - 95*(sqrt 
(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*B*a^(7/2) 
*sgn(cos(d*x + c)) + 36*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
 + 1/2*c)^2 + a))^2*A*a^(9/2)*sgn(cos(d*x + c)) + 53*(sqrt(a)*tan(1/2*d*x 
+ 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(9/2)*sgn(cos(d*x + c 
)) - 4*A*a^(11/2)*sgn(cos(d*x + c)) - 5*B*a^(11/2)*sgn(cos(d*x + c)))/((sq 
rt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sq 
rt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2 
)^2)/d
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\int \left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1/2) 
,x)
 

Output:

int((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2)*(1/cos(c + d*x))^(1/2) 
, x)
 

Reduce [F]

\[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) a \right ) \] Input:

int(sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x 
)*b + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*a + in 
t(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*b + int(sqrt(s 
ec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*a)