\(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [235]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 125 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a^{3/2} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

2*a^(3/2)*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+2/3*a^2*( 
4*A+3*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*A*(a+a 
*sec(d*x+c))^(1/2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 0.38 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.87 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a^2 \left ((5 A+3 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}+3 B \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^( 
3/2),x]
 

Output:

(2*a^2*((5*A + 3*B + A*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] + 3*B*ArcSin[S 
qrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Tan[c + d*x])/(3*d*Sqrt[-((-1 + 
 Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 128, normalized size of antiderivative = 1.02, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 4505, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a} (a (4 A+3 B)+3 a B \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {\sqrt {\sec (c+d x) a+a} (a (4 A+3 B)+3 a B \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+3 B)+3 a B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{3} \left (3 a B \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 a B \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{3} \left (\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {6 a B \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{3} \left (\frac {6 a^{3/2} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^2 (4 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\)

Input:

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x 
]
 

Output:

(2*a*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + ( 
(6*a^(3/2)*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
 (2*a^2*(4*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + 
 d*x]]))/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 
Maple [A] (warning: unable to verify)

Time = 4.27 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.52

method result size
default \(\frac {a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-3-3 \sec \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-3-3 \sec \left (d x +c \right )\right )+A \left (4 \sin \left (d x +c \right )+20 \tan \left (d x +c \right )\right )+12 B \tan \left (d x +c \right )\right )}{6 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(190\)
parts \(\frac {A \left (2 \sin \left (d x +c \right )+10 \tan \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (3 \cos \left (d x +c \right )+3\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {B \left (-\frac {\sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}+\frac {\sqrt {2}\, \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \sqrt {\sec \left (d x +c \right )}}\) \(204\)

Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/6/d*a*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(3/2)*(2^(1/2)* 
B*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+co 
s(d*x+c)))^(1/2))*(-3-3*sec(d*x+c))+2^(1/2)*B*(-2/(1+cos(d*x+c)))^(1/2)*ar 
ctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))*(-3-3*sec(d* 
x+c))+A*(4*sin(d*x+c)+20*tan(d*x+c))+12*B*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 365, normalized size of antiderivative = 2.92 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {3 \, {\left (B a \cos \left (d x + c\right ) + B a\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (A a \cos \left (d x + c\right )^{2} + {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {3 \, {\left (B a \cos \left (d x + c\right ) + B a\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (A a \cos \left (d x + c\right )^{2} + {\left (5 \, A + 3 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="fricas")
 

Output:

[1/6*(3*(B*a*cos(d*x + c) + B*a)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d 
*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + 
c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c) 
^3 + cos(d*x + c)^2)) + 4*(A*a*cos(d*x + c)^2 + (5*A + 3*B)*a*cos(d*x + c) 
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c))) 
/(d*cos(d*x + c) + d), 1/3*(3*(B*a*cos(d*x + c) + B*a)*sqrt(-a)*arctan(1/2 
*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos( 
d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*(A*a*cos(d*x + c)^2 + ( 
5*A + 3*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x 
 + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]
 

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \sec {\left (c + d x \right )}\right )}{\sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)
 

Output:

Integral((a*(sec(c + d*x) + 1))**(3/2)*(A + B*sec(c + d*x))/sec(c + d*x)** 
(3/2), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 314 vs. \(2 (107) = 214\).

Time = 0.25 (sec) , antiderivative size = 314, normalized size of antiderivative = 2.51 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {3 \, \sqrt {2} {\left (\sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \sqrt {2} a \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + 8 \, a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} B \sqrt {a} + 4 \, {\left (\sqrt {2} a \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 9 \, \sqrt {2} a \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} A \sqrt {a}}{12 \, d} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="maxima")
 

Output:

1/12*(3*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) 
 + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 
+ 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + s 
qrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt( 
2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a* 
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/ 
2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 8*a*sin(1/2*d*x + 1 
/2*c))*B*sqrt(a) + 4*(sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 9*sqrt(2)*a*sin(1/2 
*d*x + 1/2*c))*A*sqrt(a))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (107) = 214\).

Time = 1.58 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.85 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\frac {3 \, B a^{\frac {5}{2}} \log \left (\frac {{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{{\left | a \right |}} + \frac {2 \, {\left (6 \, \sqrt {2} A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, \sqrt {2} B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (4 \, \sqrt {2} A a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, \sqrt {2} B a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}}}{3 \, d} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="giac")
 

Output:

1/3*(3*B*a^(5/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2* 
d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d* 
x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) - 6* 
a))*sgn(cos(d*x + c))/abs(a) + 2*(6*sqrt(2)*A*a^3*sgn(cos(d*x + c)) + 3*sq 
rt(2)*B*a^3*sgn(cos(d*x + c)) + (4*sqrt(2)*A*a^3*sgn(cos(d*x + c)) + 3*sqr 
t(2)*B*a^3*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c) 
/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(3/ 
2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**2 
,x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*a 
+ int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*b + int( 
sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*b)