\(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\) [237]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 181 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{35 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {2 a^2 (52 A+63 B) \sin (c+d x)}{105 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {4 a^2 (52 A+63 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x)} \] Output:

2/35*a^2*(8*A+7*B)*sin(d*x+c)/d/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+2/ 
105*a^2*(52*A+63*B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+4 
/105*a^2*(52*A+63*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+ 
2/7*a*A*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d/sec(d*x+c)^(5/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.51 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 a^2 \left (15 A+3 (13 A+7 B) \sec (c+d x)+(52 A+63 B) \sec ^2(c+d x)+2 (52 A+63 B) \sec ^3(c+d x)\right ) \sin (c+d x)}{105 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^( 
7/2),x]
 

Output:

(2*a^2*(15*A + 3*(13*A + 7*B)*Sec[c + d*x] + (52*A + 63*B)*Sec[c + d*x]^2 
+ 2*(52*A + 63*B)*Sec[c + d*x]^3)*Sin[c + d*x])/(105*d*Sec[c + d*x]^(5/2)* 
Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {3042, 4505, 27, 3042, 4503, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {2}{7} \int \frac {\sqrt {\sec (c+d x) a+a} (a (8 A+7 B)+a (4 A+7 B) \sec (c+d x))}{2 \sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{7} \int \frac {\sqrt {\sec (c+d x) a+a} (a (8 A+7 B)+a (4 A+7 B) \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (8 A+7 B)+a (4 A+7 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} a (52 A+63 B) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} a (52 A+63 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4292

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} a (52 A+63 B) \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{7} \left (\frac {1}{5} a (52 A+63 B) \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4291

\(\displaystyle \frac {1}{7} \left (\frac {2 a^2 (8 A+7 B) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {1}{5} a (52 A+63 B) \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )+\frac {2 a A \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\)

Input:

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(7/2),x 
]
 

Output:

(2*a*A*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + ( 
(2*a^2*(8*A + 7*B)*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c 
+ d*x]]) + (a*(52*A + 63*B)*((2*a*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sq 
rt[a + a*Sec[c + d*x]]) + (4*a*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[ 
a + a*Sec[c + d*x]])))/5)/7
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 
Maple [A] (verified)

Time = 1.86 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.54

method result size
default \(\frac {2 a \left (\left (15 \cos \left (d x +c \right )^{3}+39 \cos \left (d x +c \right )^{2}+52 \cos \left (d x +c \right )+104\right ) A +\left (21 \cos \left (d x +c \right )^{2}+63 \cos \left (d x +c \right )+126\right ) B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(98\)
parts \(\frac {2 A a \left (15 \cos \left (d x +c \right )^{3}+39 \cos \left (d x +c \right )^{2}+52 \cos \left (d x +c \right )+104\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \tan \left (d x +c \right )}{105 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {B \left (2 \sin \left (d x +c \right )+6 \tan \left (d x +c \right )+12 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right ) a \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d \left (5 \cos \left (d x +c \right )+5\right ) \sec \left (d x +c \right )^{\frac {5}{2}}}\) \(144\)

Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/105/d*a*((15*cos(d*x+c)^3+39*cos(d*x+c)^2+52*cos(d*x+c)+104)*A+(21*cos(d 
*x+c)^2+63*cos(d*x+c)+126)*B)*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec( 
d*x+c)^(3/2)*tan(d*x+c)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.62 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, A a \cos \left (d x + c\right )^{4} + 3 \, {\left (13 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (52 \, A + 63 \, B\right )} a \cos \left (d x + c\right )^{2} + 2 \, {\left (52 \, A + 63 \, B\right )} a \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )} \sqrt {\cos \left (d x + c\right )}} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algo 
rithm="fricas")
 

Output:

2/105*(15*A*a*cos(d*x + c)^4 + 3*(13*A + 7*B)*a*cos(d*x + c)^3 + (52*A + 6 
3*B)*a*cos(d*x + c)^2 + 2*(52*A + 63*B)*a*cos(d*x + c))*sqrt((a*cos(d*x + 
c) + a)/cos(d*x + c))*sin(d*x + c)/((d*cos(d*x + c) + d)*sqrt(cos(d*x + c) 
))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(7/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 514 vs. \(2 (157) = 314\).

Time = 0.26 (sec) , antiderivative size = 514, normalized size of antiderivative = 2.84 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algo 
rithm="maxima")
 

Output:

1/840*(sqrt(2)*(735*a*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c)))*sin(7/2*d*x + 7/2*c) + 175*a*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c) 
, cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 63*a*cos(2/7*arctan2(sin(7 
/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 735*a*cos(7 
/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c) 
)) - 175*a*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos( 
7/2*d*x + 7/2*c))) - 63*a*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x 
 + 7/2*c), cos(7/2*d*x + 7/2*c))) + 30*a*sin(7/2*d*x + 7/2*c) + 63*a*sin(5 
/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 175*a*sin(3/7*ar 
ctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 735*a*sin(1/7*arctan2 
(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*A*sqrt(a) + 42*sqrt(2)*(20* 
a*cos(4/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c)))*sin(5/2*d*x 
 + 5/2*c) + 5*a*cos(2/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c) 
))*sin(5/2*d*x + 5/2*c) - 20*a*cos(5/2*d*x + 5/2*c)*sin(4/5*arctan2(sin(5/ 
2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) - 5*a*cos(5/2*d*x + 5/2*c)*sin(2/5* 
arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 2*a*sin(5/2*d*x + 5 
/2*c) + 5*a*sin(3/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))) + 
 20*a*sin(1/5*arctan2(sin(5/2*d*x + 5/2*c), cos(5/2*d*x + 5/2*c))))*B*sqrt 
(a))/d
 

Giac [A] (verification not implemented)

Time = 1.34 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.08 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {4 \, {\left ({\left ({\left (2 \, \sqrt {2} {\left (19 \, A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 21 \, B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 7 \, \sqrt {2} {\left (19 \, A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 21 \, B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 70 \, \sqrt {2} {\left (2 \, A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3 \, B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 105 \, \sqrt {2} {\left (A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + B a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{105 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {7}{2}} d} \] Input:

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x, algo 
rithm="giac")
 

Output:

4/105*(((2*sqrt(2)*(19*A*a^5*sgn(cos(d*x + c)) + 21*B*a^5*sgn(cos(d*x + c) 
))*tan(1/2*d*x + 1/2*c)^2 + 7*sqrt(2)*(19*A*a^5*sgn(cos(d*x + c)) + 21*B*a 
^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 70*sqrt(2)*(2*A*a^5*sgn(co 
s(d*x + c)) + 3*B*a^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 105*sqr 
t(2)*(A*a^5*sgn(cos(d*x + c)) + B*a^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/ 
2*c)/((a*tan(1/2*d*x + 1/2*c)^2 + a)^(7/2)*d)
 

Mupad [B] (verification not implemented)

Time = 13.64 (sec) , antiderivative size = 131, normalized size of antiderivative = 0.72 \[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\frac {a\,\cos \left (c+d\,x\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {\frac {a\,\left (\cos \left (c+d\,x\right )+1\right )}{\cos \left (c+d\,x\right )}}\,\left (910\,A\,\sin \left (c+d\,x\right )+1050\,B\,\sin \left (c+d\,x\right )+238\,A\,\sin \left (2\,c+2\,d\,x\right )+78\,A\,\sin \left (3\,c+3\,d\,x\right )+15\,A\,\sin \left (4\,c+4\,d\,x\right )+252\,B\,\sin \left (2\,c+2\,d\,x\right )+42\,B\,\sin \left (3\,c+3\,d\,x\right )\right )}{420\,d\,\left (\cos \left (c+d\,x\right )+1\right )} \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(7/ 
2),x)
 

Output:

(a*cos(c + d*x)*(1/cos(c + d*x))^(1/2)*((a*(cos(c + d*x) + 1))/cos(c + d*x 
))^(1/2)*(910*A*sin(c + d*x) + 1050*B*sin(c + d*x) + 238*A*sin(2*c + 2*d*x 
) + 78*A*sin(3*c + 3*d*x) + 15*A*sin(4*c + 4*d*x) + 252*B*sin(2*c + 2*d*x) 
 + 42*B*sin(3*c + 3*d*x)))/(420*d*(cos(c + d*x) + 1))
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)} \, dx=\sqrt {a}\, a \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{4}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(7/2),x)
 

Output:

sqrt(a)*a*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**4 
,x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**3,x) 
*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**3,x)*b 
+ int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x)**2,x)*b)