\(\int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [252]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 142 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 (A-3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \] Output:

2^(1/2)*(A-B)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a 
*sec(d*x+c))^(1/2))/a^(1/2)/d+2/3*A*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec 
(d*x+c))^(1/2)-2/3*(A-3*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^ 
(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 0.26 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.93 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 (-A+3 B+A \cos (c+d x)) \sqrt {1-\sec (c+d x)}-3 \sqrt {2} (A-B) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x] 
]),x]
 

Output:

((2*(-A + 3*B + A*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 3*Sqrt[2]*(A - B) 
*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + 
d*x]])*Tan[c + d*x])/(3*d*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a 
*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.71 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 4510, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4510

\(\displaystyle \frac {2 \int -\frac {a (A-3 B)-2 a A \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-3 B)-2 a A \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a (A-3 B)-2 a A \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A-B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A-B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {6 a (A-B) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a (A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a (A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {3 \sqrt {2} \sqrt {a} (A-B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}\)

Input:

Int[(A + B*Sec[c + d*x])/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x]
 

Output:

(2*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((- 
3*Sqrt[2]*Sqrt[a]*(A - B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x] 
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + (2*a*(A - 3*B)*Sqrt[Sec[c + d*x 
]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4510
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d 
*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B* 
n - A*b*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, 
 m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
 
Maple [A] (verified)

Time = 1.26 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.34

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (3+3 \sec \left (d x +c \right )\right )+B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-3-3 \sec \left (d x +c \right )\right )+A \left (2 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )\right )+6 B \tan \left (d x +c \right )\right )}{3 d a \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(190\)
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-2 \tan \left (d x +c \right )+2 \sin \left (d x +c \right )+\arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (3+3 \sec \left (d x +c \right )\right )\right )}{3 d a \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}+\frac {B \left (-\arctan \left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}-2 \cot \left (d x +c \right )+2 \csc \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d a \sqrt {\sec \left (d x +c \right )}}\) \(214\)

Input:

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/3/d/a*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(3/2)*(A*(-2/(1 
+cos(d*x+c)))^(1/2)*arctan(1/2*2^(1/2)/(-1/(1+cos(d*x+c)))^(1/2)*(csc(d*x+ 
c)-cot(d*x+c)))*(3+3*sec(d*x+c))+B*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*2^ 
(1/2)/(-1/(1+cos(d*x+c)))^(1/2)*(csc(d*x+c)-cot(d*x+c)))*(-3-3*sec(d*x+c)) 
+A*(2*sin(d*x+c)-2*tan(d*x+c))+6*B*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 354, normalized size of antiderivative = 2.49 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\frac {3 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} + \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} - \frac {4 \, {\left (A \cos \left (d x + c\right )^{2} - {\left (A - 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {3 \, \sqrt {2} {\left ({\left (A - B\right )} a \cos \left (d x + c\right ) + {\left (A - B\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - \frac {2 \, {\left (A \cos \left (d x + c\right )^{2} - {\left (A - 3 \, B\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

[-1/6*(3*sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*log(-(cos(d*x + c)^2 
 + 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*si 
n(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) 
+ 1))/sqrt(a) - 4*(A*cos(d*x + c)^2 - (A - 3*B)*cos(d*x + c))*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x 
+ c) + a*d), -1/3*(3*sqrt(2)*((A - B)*a*cos(d*x + c) + (A - B)*a)*sqrt(-1/ 
a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt( 
cos(d*x + c))/sin(d*x + c)) - 2*(A*cos(d*x + c)^2 - (A - 3*B)*cos(d*x + c) 
)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c))) 
/(a*d*cos(d*x + c) + a*d)]
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))/(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)**(3 
/2)), x)
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (119) = 238\).

Time = 0.28 (sec) , antiderivative size = 387, normalized size of antiderivative = 2.73 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

-1/6*((3*sqrt(2)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
)))*sin(3/2*d*x + 3/2*c) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2( 
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 
 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + 1) - 2*sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)* 
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A/sqrt(a) + 
3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/ 
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 4*sqrt(2)*sin(1/2*d*x + 1/2*c))*B/s 
qrt(a))/d
 

Giac [A] (verification not implemented)

Time = 1.12 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.86 \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {3 \, \sqrt {2} {\left (A - B\right )} \log \left ({\left | -\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {a}} + \frac {2 \, {\left (\sqrt {2} {\left (2 \, A a - 3 \, B a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, \sqrt {2} B a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {3}{2}}}}{3 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

-1/3*(3*sqrt(2)*(A - B)*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan 
(1/2*d*x + 1/2*c)^2 + a)))/sqrt(a) + 2*(sqrt(2)*(2*A*a - 3*B*a)*tan(1/2*d* 
x + 1/2*c)^2 - 3*sqrt(2)*B*a)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c) 
^2 + a)^(3/2))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/2 
)),x)
 

Output:

int((A + B/cos(c + d*x))/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3/2 
)), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{3}+\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )}d x \right ) b \right )}{a} \] Input:

int((A+B*sec(d*x+c))/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**3 
 + sec(c + d*x)**2),x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)) 
/(sec(c + d*x)**2 + sec(c + d*x)),x)*b))/a