\(\int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [256]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 197 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {(2 A-3 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}-\frac {(5 A-9 B) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {(A-3 B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \] Output:

(2*A-3*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/4 
*(5*A-9*B)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*se 
c(d*x+c))^(1/2))*2^(1/2)/a^(3/2)/d+1/2*(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d 
/(a+a*sec(d*x+c))^(3/2)-1/2*(A-3*B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*s 
ec(d*x+c))^(1/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(429\) vs. \(2(197)=394\).

Time = 1.27 (sec) , antiderivative size = 429, normalized size of antiderivative = 2.18 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {-8 (A-3 B) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )-8 (5 A-9 B) \arcsin \left (\sqrt {\sec (c+d x)}\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )-2 A \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+6 B \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+4 B \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)+5 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-9 \sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)+5 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-9 \sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^( 
3/2),x]
 

Output:

(-8*(A - 3*B)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^3*Sec[c + d* 
x]^2*Sin[(c + d*x)/2] - 8*(5*A - 9*B)*ArcSin[Sqrt[Sec[c + d*x]]]*Cos[(c + 
d*x)/2]^3*Sec[c + d*x]^2*Sin[(c + d*x)/2] - 2*A*Sqrt[1 - Sec[c + d*x]]*Sec 
[c + d*x]^(3/2)*Sin[c + d*x] + 6*B*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/ 
2)*Sin[c + d*x] + 4*B*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d* 
x] + 5*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x] 
]]*Tan[c + d*x] - 9*Sqrt[2]*B*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - 
 Sec[c + d*x]]]*Tan[c + d*x] + 5*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d* 
x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - 9*Sqrt[2]*B*ArcTa 
n[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c 
+ d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 1.21 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {3042, 4507, 27, 3042, 4509, 25, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4507

\(\displaystyle \frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-2 a (A-3 B) \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (3 a (A-B)-2 a (A-3 B) \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (3 a (A-B)-2 a (A-3 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4509

\(\displaystyle \frac {\frac {\int -\frac {\sqrt {\sec (c+d x)} \left (a^2 (A-3 B)-2 a^2 (2 A-3 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (a^2 (A-3 B)-2 a^2 (2 A-3 B) \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a^2 (A-3 B)-2 a^2 (2 A-3 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4511

\(\displaystyle \frac {-\frac {a^2 (5 A-9 B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-2 a (2 A-3 B) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {a^2 (5 A-9 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-2 a (2 A-3 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {-\frac {a^2 (5 A-9 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {4 a (2 A-3 B) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {-\frac {a^2 (5 A-9 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {4 a^{3/2} (2 A-3 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {-\frac {-\frac {2 a^2 (5 A-9 B) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {4 a^{3/2} (2 A-3 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\frac {\sqrt {2} a^{3/2} (5 A-9 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {4 a^{3/2} (2 A-3 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{a}-\frac {2 a (A-3 B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d \sqrt {a \sec (c+d x)+a}}}{4 a^2}+\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[(Sec[c + d*x]^(5/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^(3/2),x 
]
 

Output:

((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)) 
 + (-(((-4*a^(3/2)*(2*A - 3*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*S 
ec[c + d*x]]])/d + (Sqrt[2]*a^(3/2)*(5*A - 9*B)*ArcTanh[(Sqrt[a]*Sqrt[Sec[ 
c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/a) - (2*a* 
(A - 3*B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/( 
4*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4509
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m + n))), 
 x] + Simp[d/(b*(m + n))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 
 1)*Simp[b*B*(n - 1) + (A*b*(m + n) + a*B*m)*Csc[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] 
&& GtQ[n, 1]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(471\) vs. \(2(166)=332\).

Time = 4.43 (sec) , antiderivative size = 472, normalized size of antiderivative = 2.40

method result size
default \(-\frac {\cos \left (d x +c \right )^{2} \left (\sqrt {2}\, A \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (5 \cos \left (d x +c \right )^{2}+5 \cos \left (d x +c \right )\right )+\sqrt {2}\, B \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-9 \cos \left (d x +c \right )^{2}-9 \cos \left (d x +c \right )\right )+A \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-4 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )\right )+B \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (6 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )\right )+A \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-4 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )\right )+B \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (6 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )\right )+A \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}+\sin \left (d x +c \right ) \left (-3 \cos \left (d x +c \right )-2\right ) \sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(472\)
parts \(-\frac {A \sec \left (d x +c \right )^{\frac {5}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \cos \left (d x +c \right )^{3} \left (5 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+\left (-4 \cos \left (d x +c \right )-4\right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+\left (-4 \cos \left (d x +c \right )-4\right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+\sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right )}{4 d \,a^{2} \left (1+\cos \left (d x +c \right )\right )^{2} \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}+\frac {B \cos \left (d x +c \right )^{3} \left (\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (9 \cos \left (d x +c \right )^{2}+9 \cos \left (d x +c \right )\right )+\arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-6 \cos \left (d x +c \right )^{2}-6 \cos \left (d x +c \right )\right )+\arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-6 \cos \left (d x +c \right )^{2}-6 \cos \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (3 \cos \left (d x +c \right )+2\right ) \sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right ) \sec \left (d x +c \right )^{\frac {7}{2}} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(494\)

Input:

int(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

-1/4/d/a^2*cos(d*x+c)^2*(2^(1/2)*A*arctan(1/2*2^(1/2)*(-csc(d*x+c)+cot(d*x 
+c))/(-1/(1+cos(d*x+c)))^(1/2))*(5*cos(d*x+c)^2+5*cos(d*x+c))+2^(1/2)*B*ar 
ctan(1/2*2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(-1/(1+cos(d*x+c)))^(1/2))*(-9*c 
os(d*x+c)^2-9*cos(d*x+c))+A*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+co 
s(d*x+c)))^(1/2))*(-4*cos(d*x+c)^2-4*cos(d*x+c))+B*arctan(1/2*(cot(d*x+c)- 
csc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))*(6*cos(d*x+c)^2+6*cos(d*x+c))+A*a 
rctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2))*(-4*cos(d*x 
+c)^2-4*cos(d*x+c))+B*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+ 
c)))^(1/2))*(6*cos(d*x+c)^2+6*cos(d*x+c))+A*cos(d*x+c)*sin(d*x+c)*2^(1/2)* 
(-2/(1+cos(d*x+c)))^(1/2)+sin(d*x+c)*(-3*cos(d*x+c)-2)*2^(1/2)*B*(-2/(1+co 
s(d*x+c)))^(1/2))*sec(d*x+c)^(5/2)*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)^2+ 
2*cos(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.21 (sec) , antiderivative size = 666, normalized size of antiderivative = 3.38 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="fricas")
 

Output:

[-1/8*(sqrt(2)*((5*A - 9*B)*cos(d*x + c)^2 + 2*(5*A - 9*B)*cos(d*x + c) + 
5*A - 9*B)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt((a*cos( 
d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x 
+ c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 2*((2*A - 3*B)*cos(d* 
x + c)^2 + 2*(2*A - 3*B)*cos(d*x + c) + 2*A - 3*B)*sqrt(a)*log((a*cos(d*x 
+ c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 
8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*((A - 3*B)*cos(d*x + c) - 2*B) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/ 
(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(sqrt(2)*((5*A 
- 9*B)*cos(d*x + c)^2 + 2*(5*A - 9*B)*cos(d*x + c) + 5*A - 9*B)*sqrt(-a)*a 
rctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d* 
x + c))/(a*sin(d*x + c))) + 2*((2*A - 3*B)*cos(d*x + c)^2 + 2*(2*A - 3*B)* 
cos(d*x + c) + 2*A - 3*B)*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x 
+ c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c 
))*sin(d*x + c))) - 2*((A - 3*B)*cos(d*x + c) - 2*B)*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 
+ 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7057 vs. \(2 (166) = 332\).

Time = 0.57 (sec) , antiderivative size = 7057, normalized size of antiderivative = 35.82 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="maxima")
 

Output:

1/4*((4*(sin(2*d*x + 2*c) + 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x 
+ 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*(sqrt(2 
)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*si 
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) 
+ sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2 
)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^ 
2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqr 
t(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) - 2*(sqrt(2 
)*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c)))^2 + sqrt(2)*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*sin(2*d*x + 2*c)*si 
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*sqrt(2)*sin(1/2*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 4*(sqrt(2)*cos(2*d*x + 2*c) 
+ sqrt(2))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2*sqrt(2 
)*cos(2*d*x + 2*c) + sqrt(2))*log(2*cos(1/4*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c)))^2 + 2*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^ 
2 + 2*sqrt(2)*cos(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 2*sqr 
t(2)*sin(1/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 2) + 2*(sqr...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 370 vs. \(2 (166) = 332\).

Time = 2.95 (sec) , antiderivative size = 370, normalized size of antiderivative = 1.88 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {\sqrt {2} {\left (5 \, A \sqrt {a} - 9 \, B \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{2}} + \frac {4 \, {\left (2 \, A - 3 \, B\right )} \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{\frac {3}{2}}} - \frac {4 \, {\left (2 \, A - 3 \, B\right )} \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{\frac {3}{2}}} + \frac {16 \, \sqrt {2} {\left (3 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} B \sqrt {a} - B a^{\frac {3}{2}}\right )}}{{\left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} a} - \frac {2 \, \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\sqrt {2} A a - \sqrt {2} B a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}}}{8 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x, algo 
rithm="giac")
 

Output:

1/8*(sqrt(2)*(5*A*sqrt(a) - 9*B*sqrt(a))*log((sqrt(a)*tan(1/2*d*x + 1/2*c) 
 - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a^2 + 4*(2*A - 3*B)*log(abs((sqr 
t(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*s 
qrt(2) + 3)))/a^(3/2) - 4*(2*A - 3*B)*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c 
) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/a^(3/2) + 
16*sqrt(2)*(3*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^ 
2 + a))^2*B*sqrt(a) - B*a^(3/2))/(((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a* 
tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*a) - 2*sqrt(a*tan(1/2*d*x + 1/2*c) 
^2 + a)*(sqrt(2)*A*a - sqrt(2)*B*a)*tan(1/2*d*x + 1/2*c)/a^3)/(d*sgn(cos(d 
*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a/cos(c + d*x))^(3/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(5/2))/(a + a/cos(c + d*x))^(3/ 
2), x)
 

Reduce [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{3}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int(sec(d*x+c)^(5/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**3)/ 
(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*b + int((sqrt(sec(c + d*x))*sqrt 
(sec(c + d*x) + 1)*sec(c + d*x)**2)/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1) 
,x)*a))/a**2