\(\int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx\) [324]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F(-2)]
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 124 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {A x}{a^2}-\frac {2 \left (2 a^2 A b-A b^3-a^3 B\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 (a-b)^{3/2} (a+b)^{3/2} d}+\frac {b (A b-a B) \tan (c+d x)}{a \left (a^2-b^2\right ) d (a+b \sec (c+d x))} \] Output:

A*x/a^2-2*(2*A*a^2*b-A*b^3-B*a^3)*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/( 
a+b)^(1/2))/a^2/(a-b)^(3/2)/(a+b)^(3/2)/d+b*(A*b-B*a)*tan(d*x+c)/a/(a^2-b^ 
2)/d/(a+b*sec(d*x+c))
 

Mathematica [A] (verified)

Time = 0.96 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.25 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {-\frac {2 \left (-2 a^2 A b+A b^3+a^3 B\right ) \text {arctanh}\left (\frac {(-a+b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a^2-b^2}}\right )}{\sqrt {a^2-b^2}}+\frac {A b \left (a^2-b^2\right ) (c+d x)+a A \left (a^2-b^2\right ) (c+d x) \cos (c+d x)-a b (-A b+a B) \sin (c+d x)}{b+a \cos (c+d x)}}{a^2 (a-b) (a+b) d} \] Input:

Integrate[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x])^2,x]
 

Output:

((-2*(-2*a^2*A*b + A*b^3 + a^3*B)*ArcTanh[((-a + b)*Tan[(c + d*x)/2])/Sqrt 
[a^2 - b^2]])/Sqrt[a^2 - b^2] + (A*b*(a^2 - b^2)*(c + d*x) + a*A*(a^2 - b^ 
2)*(c + d*x)*Cos[c + d*x] - a*b*(-(A*b) + a*B)*Sin[c + d*x])/(b + a*Cos[c 
+ d*x]))/(a^2*(a - b)*(a + b)*d)
 

Rubi [A] (verified)

Time = 0.70 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.20, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.435, Rules used = {3042, 4411, 25, 3042, 4407, 3042, 4318, 3042, 3138, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2}dx\)

\(\Big \downarrow \) 4411

\(\displaystyle \frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}-\frac {\int -\frac {A \left (a^2-b^2\right )-a (A b-a B) \sec (c+d x)}{a+b \sec (c+d x)}dx}{a \left (a^2-b^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {A \left (a^2-b^2\right )-a (A b-a B) \sec (c+d x)}{a+b \sec (c+d x)}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A \left (a^2-b^2\right )-a (A b-a B) \csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 4407

\(\displaystyle \frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{a+b \csc \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 4318

\(\displaystyle \frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{\frac {a \cos (c+d x)}{b}+1}dx}{a b}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {\left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{b}+1}dx}{a b}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 3138

\(\displaystyle \frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {2 \left (a^3 (-B)+2 a^2 A b-A b^3\right ) \int \frac {1}{\left (1-\frac {a}{b}\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right )+\frac {a+b}{b}}d\tan \left (\frac {1}{2} (c+d x)\right )}{a b d}}{a \left (a^2-b^2\right )}+\frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {b (A b-a B) \tan (c+d x)}{a d \left (a^2-b^2\right ) (a+b \sec (c+d x))}+\frac {\frac {A x \left (a^2-b^2\right )}{a}-\frac {2 \left (a^3 (-B)+2 a^2 A b-A b^3\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a d \sqrt {a-b} \sqrt {a+b}}}{a \left (a^2-b^2\right )}\)

Input:

Int[(A + B*Sec[c + d*x])/(a + b*Sec[c + d*x])^2,x]
 

Output:

((A*(a^2 - b^2)*x)/a - (2*(2*a^2*A*b - A*b^3 - a^3*B)*ArcTanh[(Sqrt[a - b] 
*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a*Sqrt[a - b]*Sqrt[a + b]*d))/(a*(a^2 - 
b^2)) + (b*(A*b - a*B)*Tan[c + d*x])/(a*(a^2 - b^2)*d*(a + b*Sec[c + d*x]) 
)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3138
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{ 
e = FreeFactors[Tan[(c + d*x)/2], x]}, Simp[2*(e/d)   Subst[Int[1/(a + b + 
(a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] 
 && NeQ[a^2 - b^2, 0]
 

rule 4318
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbo 
l] :> Simp[1/b   Int[1/(1 + (a/b)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, 
f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4407
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
 (a_)), x_Symbol] :> Simp[c*(x/a), x] - Simp[(b*c - a*d)/a   Int[Csc[e + f* 
x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c 
- a*d, 0]
 

rule 4411
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d 
_.) + (c_)), x_Symbol] :> Simp[b*(b*c - a*d)*Cot[e + f*x]*((a + b*Csc[e + f 
*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - b^2) 
)   Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[c*(a^2 - b^2)*(m + 1) - (a*(b*c - 
 a*d)*(m + 1))*Csc[e + f*x] + b*(b*c - a*d)*(m + 2)*Csc[e + f*x]^2, x], x], 
 x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && N 
eQ[a^2 - b^2, 0] && IntegerQ[2*m]
 
Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 168, normalized size of antiderivative = 1.35

method result size
derivativedivides \(\frac {\frac {-\frac {2 a b \left (A b -B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )}-\frac {2 \left (2 A \,a^{2} b -A \,b^{3}-B \,a^{3}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a +b \right ) \left (a -b \right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{a^{2}}+\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}}{d}\) \(168\)
default \(\frac {\frac {-\frac {2 a b \left (A b -B a \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\left (a^{2}-b^{2}\right ) \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )}-\frac {2 \left (2 A \,a^{2} b -A \,b^{3}-B \,a^{3}\right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a +b \right ) \left (a -b \right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{a^{2}}+\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{2}}}{d}\) \(168\)
risch \(\frac {A x}{a^{2}}-\frac {2 i b \left (-A b +B a \right ) \left (b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}{a^{2} \left (a^{2}-b^{2}\right ) d \left (a \,{\mathrm e}^{2 i \left (d x +c \right )}+2 b \,{\mathrm e}^{i \left (d x +c \right )}+a \right )}+\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) A}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) A \,b^{3}}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-\frac {i a^{2}-i b^{2}-\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) B a}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}-\frac {2 b \ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) A}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) A \,b^{3}}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d \,a^{2}}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+\frac {i a^{2}-i b^{2}+\sqrt {a^{2}-b^{2}}\, b}{\sqrt {a^{2}-b^{2}}\, a}\right ) B a}{\sqrt {a^{2}-b^{2}}\, \left (a +b \right ) \left (a -b \right ) d}\) \(583\)

Input:

int((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2/a^2*(-a*b*(A*b-B*a)/(a^2-b^2)*tan(1/2*d*x+1/2*c)/(tan(1/2*d*x+1/2*c 
)^2*a-tan(1/2*d*x+1/2*c)^2*b-a-b)-(2*A*a^2*b-A*b^3-B*a^3)/(a+b)/(a-b)/((a+ 
b)*(a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2)))+2*A 
/a^2*arctan(tan(1/2*d*x+1/2*c)))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 250 vs. \(2 (114) = 228\).

Time = 0.12 (sec) , antiderivative size = 561, normalized size of antiderivative = 4.52 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\left [\frac {2 \, {\left (A a^{5} - 2 \, A a^{3} b^{2} + A a b^{4}\right )} d x \cos \left (d x + c\right ) + 2 \, {\left (A a^{4} b - 2 \, A a^{2} b^{3} + A b^{5}\right )} d x - {\left (B a^{3} b - 2 \, A a^{2} b^{2} + A b^{4} + {\left (B a^{4} - 2 \, A a^{3} b + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {a^{2} - b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) - {\left (a^{2} - 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {a^{2} - b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) + 2 \, a^{2} - b^{2}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + b^{2}}\right ) - 2 \, {\left (B a^{4} b - A a^{3} b^{2} - B a^{2} b^{3} + A a b^{4}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d\right )}}, \frac {{\left (A a^{5} - 2 \, A a^{3} b^{2} + A a b^{4}\right )} d x \cos \left (d x + c\right ) + {\left (A a^{4} b - 2 \, A a^{2} b^{3} + A b^{5}\right )} d x + {\left (B a^{3} b - 2 \, A a^{2} b^{2} + A b^{4} + {\left (B a^{4} - 2 \, A a^{3} b + A a b^{3}\right )} \cos \left (d x + c\right )\right )} \sqrt {-a^{2} + b^{2}} \arctan \left (-\frac {\sqrt {-a^{2} + b^{2}} {\left (b \cos \left (d x + c\right ) + a\right )}}{{\left (a^{2} - b^{2}\right )} \sin \left (d x + c\right )}\right ) - {\left (B a^{4} b - A a^{3} b^{2} - B a^{2} b^{3} + A a b^{4}\right )} \sin \left (d x + c\right )}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} d \cos \left (d x + c\right ) + {\left (a^{6} b - 2 \, a^{4} b^{3} + a^{2} b^{5}\right )} d}\right ] \] Input:

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="fricas")
 

Output:

[1/2*(2*(A*a^5 - 2*A*a^3*b^2 + A*a*b^4)*d*x*cos(d*x + c) + 2*(A*a^4*b - 2* 
A*a^2*b^3 + A*b^5)*d*x - (B*a^3*b - 2*A*a^2*b^2 + A*b^4 + (B*a^4 - 2*A*a^3 
*b + A*a*b^3)*cos(d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 
 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*x + c) + a)*sin(d*x 
+ c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) - 2*( 
B*a^4*b - A*a^3*b^2 - B*a^2*b^3 + A*a*b^4)*sin(d*x + c))/((a^7 - 2*a^5*b^2 
 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^3 + a^2*b^5)*d), ((A*a^5 - 2 
*A*a^3*b^2 + A*a*b^4)*d*x*cos(d*x + c) + (A*a^4*b - 2*A*a^2*b^3 + A*b^5)*d 
*x + (B*a^3*b - 2*A*a^2*b^2 + A*b^4 + (B*a^4 - 2*A*a^3*b + A*a*b^3)*cos(d* 
x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x + c) + a)/((a 
^2 - b^2)*sin(d*x + c))) - (B*a^4*b - A*a^3*b^2 - B*a^2*b^3 + A*a*b^4)*sin 
(d*x + c))/((a^7 - 2*a^5*b^2 + a^3*b^4)*d*cos(d*x + c) + (a^6*b - 2*a^4*b^ 
3 + a^2*b^5)*d)]
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))**2,x)
 

Output:

Integral((A + B*sec(c + d*x))/(a + b*sec(c + d*x))**2, x)
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\text {Exception raised: ValueError} \] Input:

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="maxima")
 

Output:

Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?` f 
or more de
 

Giac [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.62 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {\frac {2 \, {\left (B a^{3} - 2 \, A a^{2} b + A b^{3}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{4} - a^{2} b^{2}\right )} \sqrt {-a^{2} + b^{2}}} + \frac {{\left (d x + c\right )} A}{a^{2}} + \frac {2 \, {\left (B a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - A b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (a^{3} - a b^{2}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}}}{d} \] Input:

integrate((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x, algorithm="giac")
 

Output:

(2*(B*a^3 - 2*A*a^2*b + A*b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a 
+ 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a 
^2 + b^2)))/((a^4 - a^2*b^2)*sqrt(-a^2 + b^2)) + (d*x + c)*A/a^2 + 2*(B*a* 
b*tan(1/2*d*x + 1/2*c) - A*b^2*tan(1/2*d*x + 1/2*c))/((a^3 - a*b^2)*(a*tan 
(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 - a - b)))/d
 

Mupad [B] (verification not implemented)

Time = 18.66 (sec) , antiderivative size = 3763, normalized size of antiderivative = 30.35 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\text {Too large to display} \] Input:

int((A + B/cos(c + d*x))/(a + b/cos(c + d*x))^2,x)
                                                                                    
                                                                                    
 

Output:

(2*A*atan(((A*((A*((32*(A*a^4*b^5 - B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^ 
2 - B*a^6*b^3 + B*a^7*b^2 + 2*A*a^8*b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - 
 a^4*b^2) - (A*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6 
*b^4 - 4*a^7*b^3 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2)) 
)*1i)/a^2 + (32*tan(c/2 + (d*x)/2)*(A^2*a^6 + 2*A^2*b^6 + B^2*a^6 - 2*A^2* 
a*b^5 - 2*A^2*a^5*b - 5*A^2*a^2*b^4 + 4*A^2*a^3*b^3 + 3*A^2*a^4*b^2 - 4*A* 
B*a^5*b + 2*A*B*a^3*b^3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2)))/a^2 - (A*((A 
*((32*(A*a^4*b^5 - B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^2 - B*a^6*b^3 + B 
*a^7*b^2 + 2*A*a^8*b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - a^4*b^2) + (A*ta 
n(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6*b^4 - 4*a^7*b^3 
- 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2)))*1i)/a^2 - (32*t 
an(c/2 + (d*x)/2)*(A^2*a^6 + 2*A^2*b^6 + B^2*a^6 - 2*A^2*a*b^5 - 2*A^2*a^5 
*b - 5*A^2*a^2*b^4 + 4*A^2*a^3*b^3 + 3*A^2*a^4*b^2 - 4*A*B*a^5*b + 2*A*B*a 
^3*b^3))/(a^4*b + a^5 - a^2*b^3 - a^3*b^2)))/a^2)/((64*(A^3*b^5 + A*B^2*a^ 
5 - A^2*B*a^5 - A^3*a*b^4 + 2*A^3*a^4*b - 3*A^3*a^2*b^3 + 2*A^3*a^3*b^2 - 
3*A^2*B*a^4*b + A^2*B*a^2*b^3 + A^2*B*a^3*b^2))/(a^5*b + a^6 - a^3*b^3 - a 
^4*b^2) + (A*((A*((32*(A*a^4*b^5 - B*a^9 - A*a^9 - 3*A*a^6*b^3 + A*a^7*b^2 
 - B*a^6*b^3 + B*a^7*b^2 + 2*A*a^8*b + B*a^8*b))/(a^5*b + a^6 - a^3*b^3 - 
a^4*b^2) - (A*tan(c/2 + (d*x)/2)*(2*a^9*b - 2*a^4*b^6 + 2*a^5*b^5 + 4*a^6* 
b^4 - 4*a^7*b^3 - 2*a^8*b^2)*32i)/(a^2*(a^4*b + a^5 - a^2*b^3 - a^3*b^2...
 

Reduce [B] (verification not implemented)

Time = 0.19 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.67 \[ \int \frac {A+B \sec (c+d x)}{(a+b \sec (c+d x))^2} \, dx=\frac {-2 \sqrt {-a^{2}+b^{2}}\, \mathit {atan} \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) b}{\sqrt {-a^{2}+b^{2}}}\right ) b +a^{2} d x -b^{2} d x}{a d \left (a^{2}-b^{2}\right )} \] Input:

int((A+B*sec(d*x+c))/(a+b*sec(d*x+c))^2,x)
 

Output:

( - 2*sqrt( - a**2 + b**2)*atan((tan((c + d*x)/2)*a - tan((c + d*x)/2)*b)/ 
sqrt( - a**2 + b**2))*b + a**2*d*x - b**2*d*x)/(a*d*(a**2 - b**2))