\(\int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [404]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 171 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \left (3 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 \left (2 a A b+a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 a (2 A b+a B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

2/5*(3*A*a^2+5*A*b^2+10*B*a*b)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2* 
c),2^(1/2))*sec(d*x+c)^(1/2)/d+2/3*(2*A*a*b+B*a^2+3*B*b^2)*cos(d*x+c)^(1/2 
)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/5*a^2*A*sin( 
d*x+c)/d/sec(d*x+c)^(3/2)+2/3*a*(2*A*b+B*a)*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 4.35 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.75 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {\sec (c+d x)} \left (6 \left (3 a^2 A+5 A b^2+10 a b B\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+10 \left (2 a A b+a^2 B+3 b^2 B\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+a (10 A b+5 a B+3 a A \cos (c+d x)) \sin (2 (c+d x))\right )}{15 d} \] Input:

Integrate[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2) 
,x]
 

Output:

(Sqrt[Sec[c + d*x]]*(6*(3*a^2*A + 5*A*b^2 + 10*a*b*B)*Sqrt[Cos[c + d*x]]*E 
llipticE[(c + d*x)/2, 2] + 10*(2*a*A*b + a^2*B + 3*b^2*B)*Sqrt[Cos[c + d*x 
]]*EllipticF[(c + d*x)/2, 2] + a*(10*A*b + 5*a*B + 3*a*A*Cos[c + d*x])*Sin 
[2*(c + d*x)]))/(15*d)
 

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.02, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 4512, 27, 3042, 4535, 3042, 4258, 3042, 3119, 4533, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4512

\(\displaystyle \frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2}{5} \int -\frac {5 b^2 B \sec ^2(c+d x)+\left (3 A a^2+10 b B a+5 A b^2\right ) \sec (c+d x)+5 a (2 A b+a B)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {5 b^2 B \sec ^2(c+d x)+\left (3 A a^2+10 b B a+5 A b^2\right ) \sec (c+d x)+5 a (2 A b+a B)}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {5 b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )^2+\left (3 A a^2+10 b B a+5 A b^2\right ) \csc \left (c+d x+\frac {\pi }{2}\right )+5 a (2 A b+a B)}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4535

\(\displaystyle \frac {1}{5} \left (\left (3 a^2 A+10 a b B+5 A b^2\right ) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+\int \frac {5 b^2 B \sec ^2(c+d x)+5 a (2 A b+a B)}{\sec ^{\frac {3}{2}}(c+d x)}dx\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\left (3 a^2 A+10 a b B+5 A b^2\right ) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\int \frac {5 b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )^2+5 a (2 A b+a B)}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (\left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx+\int \frac {5 b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )^2+5 a (2 A b+a B)}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\int \frac {5 b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )^2+5 a (2 A b+a B)}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\int \frac {5 b^2 B \csc \left (c+d x+\frac {\pi }{2}\right )^2+5 a (2 A b+a B)}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4533

\(\displaystyle \frac {1}{5} \left (\frac {5}{3} \left (a^2 B+2 a A b+3 b^2 B\right ) \int \sqrt {\sec (c+d x)}dx+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {5}{3} \left (a^2 B+2 a A b+3 b^2 B\right ) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (\frac {5}{3} \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {5}{3} \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {10 \left (a^2 B+2 a A b+3 b^2 B\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \left (3 a^2 A+10 a b B+5 A b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {10 a (a B+2 A b) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 a^2 A \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[((a + b*Sec[c + d*x])^2*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]
 

Output:

(2*a^2*A*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((2*(3*a^2*A + 5*A*b^2 + 
 10*a*b*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] 
)/d + (10*(2*a*A*b + a^2*B + 3*b^2*B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d* 
x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*d) + (10*a*(2*A*b + a*B)*Sin[c + d*x])/(3* 
d*Sqrt[Sec[c + d*x]]))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4512
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a^2*A*Cos[ 
e + f*x]*((d*Csc[e + f*x])^(n + 1)/(d*f*n)), x] + Simp[1/(d*n)   Int[(d*Csc 
[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1) 
))*Csc[e + f*x] + b^2*B*n*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
 

rule 4533
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + 
Simp[(C*m + A*(m + 1))/(b^2*m)   Int[(b*Csc[e + f*x])^(m + 2), x], x] /; Fr 
eeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(486\) vs. \(2(154)=308\).

Time = 11.15 (sec) , antiderivative size = 487, normalized size of antiderivative = 2.85

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-24 A \,a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (24 A \,a^{2}+40 A a b +20 B \,a^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-6 A \,a^{2}-20 A a b -10 B \,a^{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 A a b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2}-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{2}+5 B \,a^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+15 b^{2} B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-30 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a b \right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(487\)
parts \(\frac {2 \left (A \,b^{2}+2 B a b \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 \left (2 A a b +B \,a^{2}\right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 A \,a^{2} \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 b^{2} B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(675\)

Input:

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-24*A*a^2*c 
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(24*A*a^2+40*A*a*b+20*B*a^2)*sin(1/ 
2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+(-6*A*a^2-20*A*a*b-10*B*a^2)*sin(1/2*d*x 
+1/2*c)^2*cos(1/2*d*x+1/2*c)+10*A*a*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*A*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2* 
d*x+1/2*c),2^(1/2))*a^2-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1 
/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+5*B*a^2*(sin(1/ 
2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))+15*b^2*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/ 
2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-30*B*(sin(1/2*d*x+1/ 
2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c 
),2^(1/2))*a*b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1 
/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.32 \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {5 \, \sqrt {2} {\left (i \, B a^{2} + 2 i \, A a b + 3 i \, B b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-i \, B a^{2} - 2 i \, A a b - 3 i \, B b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {2} {\left (-3 i \, A a^{2} - 10 i \, B a b - 5 i \, A b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, \sqrt {2} {\left (3 i \, A a^{2} + 10 i \, B a b + 5 i \, A b^{2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, A a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (B a^{2} + 2 \, A a b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{15 \, d} \] Input:

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorith 
m="fricas")
 

Output:

-1/15*(5*sqrt(2)*(I*B*a^2 + 2*I*A*a*b + 3*I*B*b^2)*weierstrassPInverse(-4, 
 0, cos(d*x + c) + I*sin(d*x + c)) + 5*sqrt(2)*(-I*B*a^2 - 2*I*A*a*b - 3*I 
*B*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*sqrt 
(2)*(-3*I*A*a^2 - 10*I*B*a*b - 5*I*A*b^2)*weierstrassZeta(-4, 0, weierstra 
ssPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*sqrt(2)*(3*I*A*a^2 + 
 10*I*B*a*b + 5*I*A*b^2)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) - I*sin(d*x + c))) - 2*(3*A*a^2*cos(d*x + c)^2 + 5*(B*a^2 + 
2*A*a*b)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*sec(d*x+c))**2*(A+B*sec(d*x+c))/sec(d*x+c)**(5/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*(a + b*sec(c + d*x))**2/sec(c + d*x)**(5/2), 
 x)
 

Maxima [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorith 
m="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(5/2), 
x)
 

Giac [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} {\left (b \sec \left (d x + c\right ) + a\right )}^{2}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x, algorith 
m="giac")
 

Output:

integrate((B*sec(d*x + c) + A)*(b*sec(d*x + c) + a)^2/sec(d*x + c)^(5/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(5/2),x 
)
 

Output:

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^2)/(1/cos(c + d*x))^(5/2), 
x)
 

Reduce [F]

\[ \int \frac {(a+b \sec (c+d x))^2 (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{3}}d x \right ) a^{3}+3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )^{2}}d x \right ) a^{2} b +3 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\sec \left (d x +c \right )}d x \right ) a \,b^{2}+\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) b^{3} \] Input:

int((a+b*sec(d*x+c))^2*(A+B*sec(d*x+c))/sec(d*x+c)^(5/2),x)
 

Output:

int(sqrt(sec(c + d*x))/sec(c + d*x)**3,x)*a**3 + 3*int(sqrt(sec(c + d*x))/ 
sec(c + d*x)**2,x)*a**2*b + 3*int(sqrt(sec(c + d*x))/sec(c + d*x),x)*a*b** 
2 + int(sqrt(sec(c + d*x)),x)*b**3