\(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\) [464]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 215 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a \left (a^2-b^2\right ) d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {a+b \sec (c+d x)}} \] Output:

2*A*((b+a*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*( 
a/(a+b))^(1/2))*sec(d*x+c)^(1/2)/a/d/(a+b*sec(d*x+c))^(1/2)+2*(A*b-B*a)*El 
lipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2) 
/a/(a^2-b^2)/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)-2*(A*b-B*a) 
*sec(d*x+c)^(1/2)*sin(d*x+c)/(a^2-b^2)/d/(a+b*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.83 (sec) , antiderivative size = 161, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\frac {2 \sqrt {\sec (c+d x)} \left (-\left ((a+b) (-A b+a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )\right )+A \left (a^2-b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+a (-A b+a B) \sin (c+d x)\right )}{a (a-b) (a+b) d \sqrt {a+b \sec (c+d x)}} \] Input:

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^( 
3/2),x]
 

Output:

(2*Sqrt[Sec[c + d*x]]*(-((a + b)*(-(A*b) + a*B)*Sqrt[(b + a*Cos[c + d*x])/ 
(a + b)]*EllipticE[(c + d*x)/2, (2*a)/(a + b)]) + A*(a^2 - b^2)*Sqrt[(b + 
a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)] + a*(-(A*b) 
 + a*B)*Sin[c + d*x]))/(a*(a - b)*(a + b)*d*Sqrt[a + b*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 1.66 (sec) , antiderivative size = 226, normalized size of antiderivative = 1.05, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.457, Rules used = {3042, 4515, 27, 3042, 4523, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 4515

\(\displaystyle -\frac {2 \int -\frac {A b-a B+(a A-b B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {A b-a B+(a A-b B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A b-a B+(a A-b B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4523

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}+\frac {(A b-a B) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {(A b-a B) \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4343

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {(A b-a B) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {(A b-a B) \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3134

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {(A b-a B) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {(A b-a B) \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3132

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 4345

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3142

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {A \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

\(\Big \downarrow \) 3140

\(\displaystyle \frac {\frac {2 A \left (a^2-b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}+\frac {2 (A b-a B) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}\)

Input:

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x])^(3/2),x 
]
 

Output:

((2*A*(a^2 - b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2 
, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*( 
A*b - a*B)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]]) 
/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]))/(a^2 - b^2) 
- (2*(A*b - a*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[a + 
b*Sec[c + d*x]])
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4515
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-d)*(A 
*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 
1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[(a + b 
*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[d*(n - 1)*(A*b - a*B) 
+ d*(a*A - b*B)*(m + 1)*Csc[e + f*x] - d*(A*b - a*B)*(m + n + 1)*Csc[e + f* 
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && 
 NeQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[0, n, 1]
 

rule 4523
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d 
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[A/a   I 
nt[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b - a*B) 
/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ 
[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(550\) vs. \(2(208)=416\).

Time = 9.98 (sec) , antiderivative size = 551, normalized size of antiderivative = 2.56

method result size
default \(\frac {2 \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) A \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) A \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) B \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )-A \sqrt {\frac {a -b}{a +b}}\, b \sin \left (d x +c \right )+B \sqrt {\frac {a -b}{a +b}}\, a \sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )}}{d a \sqrt {\frac {a -b}{a +b}}\, \left (a +b \right ) \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(551\)
parts \(\frac {2 B \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+\sqrt {\frac {a -b}{a +b}}\, \sin \left (d x +c \right )\right ) \cos \left (d x +c \right )^{2} \sqrt {a +b \sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{\frac {3}{2}}}{d \sqrt {\frac {a -b}{a +b}}\, \left (a +b \right ) \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}+\frac {2 A \left (\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, b \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )-\sqrt {\frac {a -b}{a +b}}\, b \sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a +b \sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )}}{d a \sqrt {\frac {a -b}{a +b}}\, \left (a +b \right ) \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+b \cos \left (d x +c \right )+b \right )}\) \(627\)

Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d/a/((a-b)/(a+b))^(1/2)/(a+b)*((cos(d*x+c)^2+2*cos(d*x+c)+1)*A*(1/(1+cos 
(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*Elliptic 
E(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+(-cos( 
d*x+c)^2-2*cos(d*x+c)-1)*B*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+ 
c))/(1+cos(d*x+c)))^(1/2)*a*EllipticE(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot( 
d*x+c)),(-(a+b)/(a-b))^(1/2))+(cos(d*x+c)^2+2*cos(d*x+c)+1)*A*(1/(1+cos(d* 
x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*EllipticF(( 
(a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+(cos(d*x+ 
c)^2+2*cos(d*x+c)+1)*B*(1/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/ 
(1+cos(d*x+c)))^(1/2)*a*EllipticF(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+ 
c)),(-(a+b)/(a-b))^(1/2))-A*((a-b)/(a+b))^(1/2)*b*sin(d*x+c)+B*((a-b)/(a+b 
))^(1/2)*a*sin(d*x+c))*cos(d*x+c)*(a+b*sec(d*x+c))^(1/2)*sec(d*x+c)^(1/2)/ 
(cos(d*x+c)^2*a+a*cos(d*x+c)+b*cos(d*x+c)+b)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 606, normalized size of antiderivative = 2.82 \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algo 
rithm="fricas")
 

Output:

1/3*(6*(B*a^3 - A*a^2*b)*sqrt((a*cos(d*x + c) + b)/cos(d*x + c))*sqrt(cos( 
d*x + c))*sin(d*x + c) - sqrt(2)*(3*I*A*a^2*b - I*B*a*b^2 - 2*I*A*b^3 + (3 
*I*A*a^3 - I*B*a^2*b - 2*I*A*a*b^2)*cos(d*x + c))*sqrt(a)*weierstrassPInve 
rse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x 
 + c) + 3*I*a*sin(d*x + c) + 2*b)/a) - sqrt(2)*(-3*I*A*a^2*b + I*B*a*b^2 + 
 2*I*A*b^3 + (-3*I*A*a^3 + I*B*a^2*b + 2*I*A*a*b^2)*cos(d*x + c))*sqrt(a)* 
weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 
1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) + 3*sqrt(2)*(-I*B*a^2 
*b + I*A*a*b^2 + (-I*B*a^3 + I*A*a^2*b)*cos(d*x + c))*sqrt(a)*weierstrassZ 
eta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInve 
rse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x 
 + c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(2)*(I*B*a^2*b - I*A*a*b^2 + 
 (I*B*a^3 - I*A*a^2*b)*cos(d*x + c))*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 
 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 
 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin 
(d*x + c) + 2*b)/a)))/((a^5 - a^3*b^2)*d*cos(d*x + c) + (a^4*b - a^2*b^3)* 
d)
 

Sympy [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\sec {\left (c + d x \right )}}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(sec(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sqrt(sec(c + d*x))/(a + b*sec(c + d*x))**(3/ 
2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(3/ 
2), x)
 

Giac [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x, algo 
rithm="giac")
 

Output:

integrate((B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c) + a)^(3/ 
2), x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x))^(3/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + b/cos(c + d*x))^(3/ 
2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right ) b +a}}{\sec \left (d x +c \right ) b +a}d x \] Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(3/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x)*b + a))/(sec(c + d*x)*b + a),x)