\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx\) [485]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 31, antiderivative size = 70 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {2 a (A+B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (A+3 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 d} \] Output:

2*a*(A+B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/3*a*(A+3*B)*InverseJac 
obiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/3*a*A*cos(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.58 (sec) , antiderivative size = 309, normalized size of antiderivative = 4.41 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (-6 (A+B) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sec (c) \sin (d x+\arctan (\tan (c)))+\left (9 (A+B) \cos (c-d x-\arctan (\tan (c))) \csc (c) \sec (c)+3 A \cos (c+d x+\arctan (\tan (c))) \csc (c) \sec (c)+3 B \cos (c+d x+\arctan (\tan (c))) \csc (c) \sec (c)-12 A \cos (c+d x) \cot (c) \sqrt {\sec ^2(c)}-12 B \cos (c+d x) \cot (c) \sqrt {\sec ^2(c)}-4 (A+3 B) \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sqrt {\sec ^2(c)} \sec (d x-\arctan (\cot (c))) \sin (c)+4 A \cos (c+d x) \sqrt {\sec ^2(c)} \sin (c+d x)\right ) \sqrt {\sin ^2(d x+\arctan (\tan (c)))}\right )}{12 d \sqrt {\cos (c+d x)} \sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]
 

Output:

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(-6*(A + B)*HypergeometricPFQ[{-1 
/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sec[c]*Sin[d*x + ArcTan[Tan 
[c]]] + (9*(A + B)*Cos[c - d*x - ArcTan[Tan[c]]]*Csc[c]*Sec[c] + 3*A*Cos[c 
 + d*x + ArcTan[Tan[c]]]*Csc[c]*Sec[c] + 3*B*Cos[c + d*x + ArcTan[Tan[c]]] 
*Csc[c]*Sec[c] - 12*A*Cos[c + d*x]*Cot[c]*Sqrt[Sec[c]^2] - 12*B*Cos[c + d* 
x]*Cot[c]*Sqrt[Sec[c]^2] - 4*(A + 3*B)*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[ 
Cot[c]]]^2]*Sqrt[Csc[c]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - 
ArcTan[Cot[c]]]^2]*Sqrt[Sec[c]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + 4*A*C 
os[c + d*x]*Sqrt[Sec[c]^2]*Sin[c + d*x])*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2] 
))/(12*d*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^ 
2])
 

Rubi [A] (verified)

Time = 0.62 (sec) , antiderivative size = 73, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {3042, 3433, 3042, 3447, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a) (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {(a \cos (c+d x)+a) (A \cos (c+d x)+B)}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right ) \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3447

\(\displaystyle \int \frac {(a A+a B) \cos (c+d x)+a A \cos ^2(c+d x)+a B}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a A+a B) \sin \left (c+d x+\frac {\pi }{2}\right )+a A \sin \left (c+d x+\frac {\pi }{2}\right )^2+a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {2}{3} \int \frac {a (A+3 B)+3 a (A+B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {a (A+3 B)+3 a (A+B) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {a (A+3 B)+3 a (A+B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left (a (A+3 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a (A+B) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (a (A+3 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a (A+B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{3} \left (a (A+3 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a (A+B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{3} \left (\frac {2 a (A+3 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a (A+B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])*(A + B*Sec[c + d*x]),x]
 

Output:

((6*a*(A + B)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A + 3*B)*EllipticF[(c + 
 d*x)/2, 2])/d)/3 + (2*a*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(320\) vs. \(2(67)=134\).

Time = 2.83 (sec) , antiderivative size = 321, normalized size of antiderivative = 4.59

method result size
default \(-\frac {2 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a \left (4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-2 A \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-3 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}+3 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(321\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x,method=_RETURNVER 
BOSE)
 

Output:

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*A*cos(1/ 
2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-2*A*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2 
*c)+A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*( 
2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)-3*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+3*B*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+ 
1/2*c)^2-1)^(1/2)-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+ 
sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^ 
(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 142, normalized size of antiderivative = 2.03 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {2 \, A a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - i \, \sqrt {2} {\left (A + 3 \, B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + 3 \, B\right )} a {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 i \, \sqrt {2} {\left (A + B\right )} a {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{3 \, d} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm= 
"fricas")
 

Output:

1/3*(2*A*a*sqrt(cos(d*x + c))*sin(d*x + c) - I*sqrt(2)*(A + 3*B)*a*weierst 
rassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*(A + 3*B)*a 
*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*I*sqrt(2)*( 
A + B)*a*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + 
I*sin(d*x + c))) - 3*I*sqrt(2)*(A + B)*a*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm= 
"maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 

Giac [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {3}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x, algorithm= 
"giac")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)
 

Mupad [B] (verification not implemented)

Time = 11.92 (sec) , antiderivative size = 85, normalized size of antiderivative = 1.21 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=\frac {2\,A\,a\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d} \] Input:

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x)),x)
 

Output:

(2*A*a*(cos(c + d*x)^(1/2)*sin(c + d*x) + ellipticF(c/2 + (d*x)/2, 2)))/(3 
*d) + (2*A*a*ellipticE(c/2 + (d*x)/2, 2))/d + (2*B*a*ellipticE(c/2 + (d*x) 
/2, 2))/d + (2*B*a*ellipticF(c/2 + (d*x)/2, 2))/d
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x)) (A+B \sec (c+d x)) \, dx=a \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))*(A+B*sec(d*x+c)),x)
 

Output:

a*(int(sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x)**2,x)*b + int(sqrt(cos 
(c + d*x))*cos(c + d*x)*sec(c + d*x),x)*a + int(sqrt(cos(c + d*x))*cos(c + 
 d*x)*sec(c + d*x),x)*b + int(sqrt(cos(c + d*x))*cos(c + d*x),x)*a)