\(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx\) [491]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 126 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\frac {4 a^2 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a^2 (A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 a^2 (7 A+5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 d}+\frac {2 A \sqrt {\cos (c+d x)} \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{5 d} \] Output:

4/5*a^2*(4*A+5*B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3*a^2*(A+2*B)* 
InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/d+2/15*a^2*(7*A+5*B)*cos(d*x+c)^(1/ 
2)*sin(d*x+c)/d+2/5*A*cos(d*x+c)^(1/2)*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.53 (sec) , antiderivative size = 994, normalized size of antiderivative = 7.89 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx =\text {Too large to display} \] Input:

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x 
]
 

Output:

(Cos[c + d*x]^(7/2)*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec 
[c + d*x])*(-1/5*((4*A + 5*B)*Cot[c])/d + ((2*A + B)*Cos[d*x]*Sin[c])/(6*d 
) + (A*Cos[2*d*x]*Sin[2*c])/(20*d) + ((2*A + B)*Cos[c]*Sin[d*x])/(6*d) + ( 
A*Cos[2*c]*Sin[2*d*x])/(20*d)))/(B + A*Cos[c + d*x]) - (A*Cos[c + d*x]^3*C 
sc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Se 
c[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - A 
rcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^ 
2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]]) 
/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (2*B*Cos[c + d*x]^3*Csc[c 
]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/ 
2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*Sec[d*x - ArcTa 
n[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*S 
in[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3* 
d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (2*A*Cos[c + d*x]^3*Csc[c]*Se 
c[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x])*((Hypergeom 
etricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTa 
n[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + 
 ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2] 
]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c 
]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c...
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.05, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3433, 3042, 3455, 27, 3042, 3447, 3042, 3502, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^2 (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^2 (A \cos (c+d x)+B)}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {2}{5} \int \frac {(\cos (c+d x) a+a) (a (A+5 B)+a (7 A+5 B) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {(\cos (c+d x) a+a) (a (A+5 B)+a (7 A+5 B) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (A+5 B)+a (7 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {1}{5} \int \frac {(7 A+5 B) \cos ^2(c+d x) a^2+(A+5 B) a^2+\left ((A+5 B) a^2+(7 A+5 B) a^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {(7 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^2+(A+5 B) a^2+\left ((A+5 B) a^2+(7 A+5 B) a^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {5 (A+2 B) a^2+3 (4 A+5 B) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)}}dx+\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {5 (A+2 B) a^2+3 (4 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (A+2 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 (4 A+5 B) \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 (4 A+5 B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (A+2 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {2 a^2 (7 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}+\frac {2}{3} \left (\frac {10 a^2 (A+2 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 (4 A+5 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)} \left (a^2 \cos (c+d x)+a^2\right )}{5 d}\)

Input:

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^2*(A + B*Sec[c + d*x]),x]
 

Output:

(2*A*Sqrt[Cos[c + d*x]]*(a^2 + a^2*Cos[c + d*x])*Sin[c + d*x])/(5*d) + ((2 
*((6*a^2*(4*A + 5*B)*EllipticE[(c + d*x)/2, 2])/d + (10*a^2*(A + 2*B)*Elli 
pticF[(c + d*x)/2, 2])/d))/3 + (2*a^2*(7*A + 5*B)*Sqrt[Cos[c + d*x]]*Sin[c 
 + d*x])/(3*d))/5
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(356\) vs. \(2(117)=234\).

Time = 17.04 (sec) , antiderivative size = 357, normalized size of antiderivative = 2.83

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (-12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (32 A +10 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-13 A -5 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+5 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-12 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}+10 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}-15 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(357\)

Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x,method=_RETURNV 
ERBOSE)
 

Output:

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*A*c 
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(32*A+10*B)*sin(1/2*d*x+1/2*c)^4*co 
s(1/2*d*x+1/2*c)+(-13*A-5*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+5*A*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1 
/2*d*x+1/2*c)^2-1)^(1/2)-12*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+10*B*EllipticF(cos 
(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c 
)^2-1)^(1/2)-15*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c 
)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))/(-2*sin(1/2*d*x+1/2*c)^4+sin( 
1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2 
)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.42 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (A + 2 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (A + 2 \, B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (4 \, A + 5 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (4 \, A + 5 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (3 \, A a^{2} \cos \left (d x + c\right ) + 5 \, {\left (2 \, A + B\right )} a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{15 \, d} \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorith 
m="fricas")
 

Output:

-2/15*(5*I*sqrt(2)*(A + 2*B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) - 5*I*sqrt(2)*(A + 2*B)*a^2*weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(4*A + 5*B)*a^2*weierstrassZeta 
(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*s 
qrt(2)*(4*A + 5*B)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c))) - (3*A*a^2*cos(d*x + c) + 5*(2*A + B)*a^2)* 
sqrt(cos(d*x + c))*sin(d*x + c))/d
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**2*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorith 
m="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(5/2), 
x)
 

Giac [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \cos \left (d x + c\right )^{\frac {5}{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x, algorith 
m="giac")
 

Output:

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^2*cos(d*x + c)^(5/2), 
x)
 

Mupad [B] (verification not implemented)

Time = 12.07 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.21 \[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=\frac {2\,A\,a^2\,\left (\frac {2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{3}+\frac {2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{3}\right )}{d}+\frac {2\,B\,a^2\,\left (\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )+6\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+4\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{3\,d}+\frac {2\,A\,a^2\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}-\frac {2\,A\,a^2\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \] Input:

int(cos(c + d*x)^(5/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^2,x)
 

Output:

(2*A*a^2*((2*cos(c + d*x)^(1/2)*sin(c + d*x))/3 + (2*ellipticF(c/2 + (d*x) 
/2, 2))/3))/d + (2*B*a^2*(cos(c + d*x)^(1/2)*sin(c + d*x) + 6*ellipticE(c/ 
2 + (d*x)/2, 2) + 4*ellipticF(c/2 + (d*x)/2, 2)))/(3*d) + (2*A*a^2*ellipti 
cE(c/2 + (d*x)/2, 2))/d - (2*A*a^2*cos(c + d*x)^(7/2)*sin(c + d*x)*hyperge 
om([1/2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))
 

Reduce [F]

\[ \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^2 (A+B \sec (c+d x)) \, dx=a^{2} \left (\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}d x \right ) b +2 \left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^2*(A+B*sec(d*x+c)),x)
 

Output:

a**2*(int(sqrt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**3,x)*b + int(sq 
rt(cos(c + d*x))*cos(c + d*x)**2*sec(c + d*x)**2,x)*a + 2*int(sqrt(cos(c + 
 d*x))*cos(c + d*x)**2*sec(c + d*x)**2,x)*b + 2*int(sqrt(cos(c + d*x))*cos 
(c + d*x)**2*sec(c + d*x),x)*a + int(sqrt(cos(c + d*x))*cos(c + d*x)**2*se 
c(c + d*x),x)*b + int(sqrt(cos(c + d*x))*cos(c + d*x)**2,x)*a)