\(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx\) [503]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 171 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=-\frac {(7 A-4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {5 (2 A-B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {5 (2 A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a^2 d}-\frac {(7 A-4 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac {(A-B) \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2} \] Output:

-(7*A-4*B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+5/3*(2*A-B)*Inverse 
JacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^2/d+5/3*(2*A-B)*cos(d*x+c)^(1/2)*sin(d*x 
+c)/a^2/d-1/3*(7*A-4*B)*cos(d*x+c)^(3/2)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))-1 
/3*(A-B)*cos(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.81 (sec) , antiderivative size = 1114, normalized size of antiderivative = 6.51 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx =\text {Too large to display} \] Input:

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2 
,x]
 

Output:

(-20*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, 
Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d*x])*Se 
c[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
+ Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[C 
ot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x] 
)^2) + (10*B*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, { 
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d* 
x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(S 
qrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - Ar 
cTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c 
+ d*x])^2) + (Cos[c/2 + (d*x)/2]^4*(A + B*Sec[c + d*x])*((-4*(-3*A + 2*B - 
 4*A*Cos[c] + 2*B*Cos[c])*Csc[c])/d + (8*A*Cos[d*x]*Sin[c])/(3*d) + (2*Sec 
[c/2]*Sec[c/2 + (d*x)/2]^3*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/(3*d) - ( 
4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(-3*A*Sin[(d*x)/2] + 2*B*Sin[(d*x)/2]))/d + 
(8*A*Cos[c]*Sin[d*x])/(3*d) + (2*(-A + B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/( 
3*d)))/(Sqrt[Cos[c + d*x]]*(B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])^2) + 
(7*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*Sec[c + d*x]*(A + B*Sec[c + d* 
x])*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]* 
Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqr 
t[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*...
 

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 173, normalized size of antiderivative = 1.01, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3433, 3042, 3456, 27, 3042, 3456, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a \sec (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {\cos ^{\frac {5}{2}}(c+d x) (A \cos (c+d x)+B)}{(a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2}dx\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\int -\frac {\cos ^{\frac {3}{2}}(c+d x) (5 a (A-B)-3 a (3 A-B) \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) (5 a (A-B)-3 a (3 A-B) \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (5 a (A-B)-3 a (3 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3456

\(\displaystyle -\frac {\frac {\int 3 \sqrt {\cos (c+d x)} \left (a^2 (7 A-4 B)-5 a^2 (2 A-B) \cos (c+d x)\right )dx}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {3 \int \sqrt {\cos (c+d x)} \left (a^2 (7 A-4 B)-5 a^2 (2 A-B) \cos (c+d x)\right )dx}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2 (7 A-4 B)-5 a^2 (2 A-B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {\frac {3 \left (a^2 (7 A-4 B) \int \sqrt {\cos (c+d x)}dx-5 a^2 (2 A-B) \int \cos ^{\frac {3}{2}}(c+d x)dx\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \left (a^2 (7 A-4 B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-5 a^2 (2 A-B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3115

\(\displaystyle -\frac {\frac {3 \left (a^2 (7 A-4 B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-5 a^2 (2 A-B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {3 \left (a^2 (7 A-4 B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-5 a^2 (2 A-B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {\frac {3 \left (\frac {2 a^2 (7 A-4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-5 a^2 (2 A-B) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {\frac {3 \left (\frac {2 a^2 (7 A-4 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-5 a^2 (2 A-B) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}+\frac {2 (7 A-4 B) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A-B) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\)

Input:

Int[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + a*Sec[c + d*x])^2,x]
 

Output:

-1/3*((A - B)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^2) 
- ((2*(7*A - 4*B)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(1 + Cos[c + d*x])) 
+ (3*((2*a^2*(7*A - 4*B)*EllipticE[(c + d*x)/2, 2])/d - 5*a^2*(2*A - B)*(( 
2*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/( 
3*d))))/a^2)/(6*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(434\) vs. \(2(160)=320\).

Time = 5.08 (sec) , antiderivative size = 435, normalized size of antiderivative = 2.54

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (16 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+20 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+42 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-10 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-48 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+38 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+21 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-15 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A +B \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(435\)

Input:

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x,method=_RETURNV 
ERBOSE)
 

Output:

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(16*A*cos(1/2 
*d*x+1/2*c)^8+12*A*cos(1/2*d*x+1/2*c)^6+20*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2 
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d 
*x+1/2*c),2^(1/2))+42*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-24 
*B*cos(1/2*d*x+1/2*c)^6-10*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^( 
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2 
))-24*B*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+ 
1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-48*A*cos(1/2*d*x+1 
/2*c)^4+38*B*cos(1/2*d*x+1/2*c)^4+21*A*cos(1/2*d*x+1/2*c)^2-15*B*cos(1/2*d 
*x+1/2*c)^2-A+B)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2 
*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.14 \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {2 \, {\left (2 \, A \cos \left (d x + c\right )^{2} + {\left (13 \, A - 6 \, B\right )} \cos \left (d x + c\right ) + 10 \, A - 5 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (2 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (2 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (2 i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (-2 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-2 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-2 i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (7 i \, A - 4 i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (7 i \, A - 4 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (7 i \, A - 4 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-7 i \, A + 4 i \, B\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-7 i \, A + 4 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-7 i \, A + 4 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorith 
m="fricas")
 

Output:

1/6*(2*(2*A*cos(d*x + c)^2 + (13*A - 6*B)*cos(d*x + c) + 10*A - 5*B)*sqrt( 
cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2)*(2*I*A - I*B)*cos(d*x + c)^2 + 2*s 
qrt(2)*(2*I*A - I*B)*cos(d*x + c) + sqrt(2)*(2*I*A - I*B))*weierstrassPInv 
erse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) - 5*(sqrt(2)*(-2*I*A + I*B)*cos 
(d*x + c)^2 + 2*sqrt(2)*(-2*I*A + I*B)*cos(d*x + c) + sqrt(2)*(-2*I*A + I* 
B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2) 
*(7*I*A - 4*I*B)*cos(d*x + c)^2 + 2*sqrt(2)*(7*I*A - 4*I*B)*cos(d*x + c) + 
 sqrt(2)*(7*I*A - 4*I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)*(-7*I*A + 4*I*B)*cos(d*x + 
c)^2 + 2*sqrt(2)*(-7*I*A + 4*I*B)*cos(d*x + c) + sqrt(2)*(-7*I*A + 4*I*B)) 
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d* 
x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorith 
m="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, 
x)
 

Giac [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x, algorith 
m="giac")
 

Output:

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2} \,d x \] Input:

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^2,x)
 

Output:

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + a/cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{(a+a \sec (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a}{a^{2}} \] Input:

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+a*sec(d*x+c))^2,x)
 

Output:

(int((sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x))/(sec(c + d*x)**2 + 2*s 
ec(c + d*x) + 1),x)*b + int((sqrt(cos(c + d*x))*cos(c + d*x))/(sec(c + d*x 
)**2 + 2*sec(c + d*x) + 1),x)*a)/a**2