\(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx\) [512]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 178 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=-\frac {(A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {(4 A+B) \sqrt {\cos (c+d x)} \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(A-B) \sqrt {\cos (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

-1/10*(A-B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(A+B)*InverseJ 
acobiAM(1/2*d*x+1/2*c,2^(1/2))/a^3/d-1/5*(A-B)*cos(d*x+c)^(1/2)*sin(d*x+c) 
/d/(a+a*cos(d*x+c))^3+1/15*(4*A+B)*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d/(a+a*co 
s(d*x+c))^2+1/10*(A-B)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a^3+a^3*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.35 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.06 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=-\frac {\sqrt {\cos (c+d x)} \csc (c+d x) \left ((-40 (29 A-36 B) \cos (c+d x)+7 (71 A-121 B+4 (29 A-19 B) \cos (2 (c+d x))-40 A \cos (3 (c+d x))+5 A \cos (4 (c+d x))+5 B \cos (4 (c+d x)))) \csc ^4(c+d x)+280 (A+B) \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}+320 (A-B) \cos (c+d x) \operatorname {Hypergeometric2F1}\left (\frac {3}{4},\frac {7}{2},\frac {7}{4},\cos ^2(c+d x)\right ) \sqrt {\sin ^2(c+d x)}\right )}{1680 a^3 d} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^3) 
,x]
 

Output:

-1/1680*(Sqrt[Cos[c + d*x]]*Csc[c + d*x]*((-40*(29*A - 36*B)*Cos[c + d*x] 
+ 7*(71*A - 121*B + 4*(29*A - 19*B)*Cos[2*(c + d*x)] - 40*A*Cos[3*(c + d*x 
)] + 5*A*Cos[4*(c + d*x)] + 5*B*Cos[4*(c + d*x)]))*Csc[c + d*x]^4 + 280*(A 
 + B)*Hypergeometric2F1[1/4, 1/2, 5/4, Cos[c + d*x]^2]*Sqrt[Sin[c + d*x]^2 
] + 320*(A - B)*Cos[c + d*x]*Hypergeometric2F1[3/4, 7/2, 7/4, Cos[c + d*x] 
^2]*Sqrt[Sin[c + d*x]^2]))/(a^3*d)
 

Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.08, number of steps used = 16, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.485, Rules used = {3042, 3433, 3042, 3456, 27, 3042, 3457, 25, 3042, 3457, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A \cos (c+d x)+B)}{(a \cos (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A \sin \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3456

\(\displaystyle \frac {\int -\frac {a (A-B)-a (7 A+3 B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{5 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {a (A-B)-a (7 A+3 B) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {a (A-B)-a (7 A+3 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {\frac {\int -\frac {(A+4 B) a^2+(4 A+B) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {-\frac {\int \frac {(A+4 B) a^2+(4 A+B) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\int \frac {(A+4 B) a^2+(4 A+B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3457

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3 (A+B)-3 a^3 (A-B) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3 (A+B)-3 a^3 (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\frac {\int \frac {5 a^3 (A+B)-3 a^3 (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3227

\(\displaystyle -\frac {-\frac {\frac {5 a^3 (A+B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx-3 a^3 (A-B) \int \sqrt {\cos (c+d x)}dx}{2 a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {-\frac {\frac {5 a^3 (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-3 a^3 (A-B) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3119

\(\displaystyle -\frac {-\frac {\frac {5 a^3 (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {6 a^3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}+\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {-\frac {\frac {3 a^2 (A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}+\frac {\frac {10 a^3 (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {6 a^3 (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}}{3 a^2}-\frac {2 a (4 A+B) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}}{10 a^2}-\frac {(A-B) \sin (c+d x) \sqrt {\cos (c+d x)}}{5 d (a \cos (c+d x)+a)^3}\)

Input:

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^3),x]
 

Output:

-1/5*((A - B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) 
- ((-2*a*(4*A + B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d* 
x])^2) - (((-6*a^3*(A - B)*EllipticE[(c + d*x)/2, 2])/d + (10*a^3*(A + B)* 
EllipticF[(c + d*x)/2, 2])/d)/(2*a^2) + (3*a^2*(A - B)*Sqrt[Cos[c + d*x]]* 
Sin[c + d*x])/(d*(a + a*Cos[c + d*x])))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(450\) vs. \(2(165)=330\).

Time = 4.98 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.53

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+10 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+10 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+22 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-24 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-6 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+17 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-7 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-3 A +3 B \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(451\)

Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^3,x,method=_RETURNV 
ERBOSE)
 

Output:

-1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*A*cos(1/ 
2*d*x+1/2*c)^8+10*A*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2* 
cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*A*co 
s(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1 
)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*B*cos(1/2*d*x+1/2*c)^8+10 
*B*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c 
)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-6*B*cos(1/2*d*x+1/2*c)^ 
5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE 
(cos(1/2*d*x+1/2*c),2^(1/2))-2*A*cos(1/2*d*x+1/2*c)^6+22*B*cos(1/2*d*x+1/2 
*c)^6-24*A*cos(1/2*d*x+1/2*c)^4-6*B*cos(1/2*d*x+1/2*c)^4+17*A*cos(1/2*d*x+ 
1/2*c)^2-7*B*cos(1/2*d*x+1/2*c)^2-3*A+3*B)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*si 
n(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1 
/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 465, normalized size of antiderivative = 2.61 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {2 \, {\left (3 \, {\left (A - B\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (7 \, A - 2 \, B\right )} \cos \left (d x + c\right ) + 5 \, A + 5 \, B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, {\left (\sqrt {2} {\left (i \, A + i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, {\left (\sqrt {2} {\left (-i \, A - i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="fricas")
 

Output:

1/60*(2*(3*(A - B)*cos(d*x + c)^2 + 2*(7*A - 2*B)*cos(d*x + c) + 5*A + 5*B 
)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*(sqrt(2)*(I*A + I*B)*cos(d*x + c)^3 
+ 3*sqrt(2)*(I*A + I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(I*A + I*B)*cos(d*x + c 
) + sqrt(2)*(I*A + I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d 
*x + c)) - 5*(sqrt(2)*(-I*A - I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-I*A - I*B) 
*cos(d*x + c)^2 + 3*sqrt(2)*(-I*A - I*B)*cos(d*x + c) + sqrt(2)*(-I*A - I* 
B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2) 
*(I*A - I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(I*A - I*B)*cos(d*x + c)^2 + 3*sqr 
t(2)*(I*A - I*B)*cos(d*x + c) + sqrt(2)*(I*A - I*B))*weierstrassZeta(-4, 0 
, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*(sqrt(2)* 
(-I*A + I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-I*A + I*B)*cos(d*x + c)^2 + 3*sq 
rt(2)*(-I*A + I*B)*cos(d*x + c) + sqrt(2)*(-I*A + I*B))*weierstrassZeta(-4 
, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*co 
s(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(3/2)/(a+a*sec(d*x+c))**3,x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="giac")
 

Output:

integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^3*cos(d*x + c)^(3/2)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{3/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^3),x)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(3/2)*(a + a/cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{2}}d x \right ) b}{a^{3}} \] Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^3,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**2*sec(c + d*x)**3 + 3*cos(c + d*x)* 
*2*sec(c + d*x)**2 + 3*cos(c + d*x)**2*sec(c + d*x) + cos(c + d*x)**2),x)* 
a + int((sqrt(cos(c + d*x))*sec(c + d*x))/(cos(c + d*x)**2*sec(c + d*x)**3 
 + 3*cos(c + d*x)**2*sec(c + d*x)**2 + 3*cos(c + d*x)**2*sec(c + d*x) + co 
s(c + d*x)**2),x)*b)/a**3