\(\int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx\) [514]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-1)]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 221 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {(9 A-49 B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {(3 A-13 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}-\frac {(9 A-49 B) \sin (c+d x)}{10 a^3 d \sqrt {\cos (c+d x)}}+\frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^3}+\frac {(3 A-8 B) \sin (c+d x)}{15 a d \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2}+\frac {(3 A-13 B) \sin (c+d x)}{6 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \cos (c+d x)\right )} \] Output:

1/10*(9*A-49*B)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/6*(3*A-13*B) 
*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))/a^3/d-1/10*(9*A-49*B)*sin(d*x+c)/a 
^3/d/cos(d*x+c)^(1/2)+1/5*(A-B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x 
+c))^3+1/15*(3*A-8*B)*sin(d*x+c)/a/d/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2+1 
/6*(3*A-13*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a^3+a^3*cos(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.91 (sec) , antiderivative size = 1211, normalized size of antiderivative = 5.48 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3) 
,x]
 

Output:

(-2*A*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, S 
in[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec[c + d*x])*S 
ec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 
 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[ 
Cot[c]]]])/(d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x]) 
^3) + (26*B*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5 
/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec[c + d 
*x])*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-( 
Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - A 
rcTan[Cot[c]]]])/(3*d*(B + A*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c 
 + d*x])^3) + (Cos[c/2 + (d*x)/2]^6*(A + B*Sec[c + d*x])*((2*(20*B - 9*A*C 
os[c] + 29*B*Cos[c])*Csc[c/2]*Sec[c/2]*Sec[c])/(5*d) + (2*Sec[c/2]*Sec[c/2 
 + (d*x)/2]^5*(-(A*Sin[(d*x)/2]) + B*Sin[(d*x)/2]))/(5*d) + (4*Sec[c/2]*Se 
c[c/2 + (d*x)/2]^3*(-6*A*Sin[(d*x)/2] + 11*B*Sin[(d*x)/2]))/(15*d) + (4*Se 
c[c/2]*Sec[c/2 + (d*x)/2]*(-9*A*Sin[(d*x)/2] + 29*B*Sin[(d*x)/2]))/(5*d) + 
 (16*B*Sec[c]*Sec[c + d*x]*Sin[d*x])/d + (4*(-6*A + 11*B)*Sec[c/2 + (d*x)/ 
2]^2*Tan[c/2])/(15*d) + (2*(-A + B)*Sec[c/2 + (d*x)/2]^4*Tan[c/2])/(5*d))) 
/(Cos[c + d*x]^(3/2)*(B + A*Cos[c + d*x])*(a + a*Sec[c + d*x])^3) - (9*A*C 
os[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*Sec[c + d*x]^2*(A + B*Sec[c + d*x])* 
((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*S...
 

Rubi [A] (verified)

Time = 1.39 (sec) , antiderivative size = 227, normalized size of antiderivative = 1.03, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.515, Rules used = {3042, 3433, 3042, 3457, 27, 3042, 3457, 3042, 3457, 27, 3042, 3227, 3042, 3116, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3433

\(\displaystyle \int \frac {A \cos (c+d x)+B}{\cos ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^3}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \sin \left (c+d x+\frac {\pi }{2}\right )+B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3}dx\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {\int -\frac {a (A-11 B)-5 a (A-B) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{5 a^2}+\frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\int \frac {a (A-11 B)-5 a (A-B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)^2}dx}{10 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\int \frac {a (A-11 B)-5 a (A-B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx}{10 a^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\int \frac {a^2 (6 A-41 B)-3 a^2 (3 A-8 B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\int \frac {a^2 (6 A-41 B)-3 a^2 (3 A-8 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3457

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {\int \frac {3 a^3 (9 A-49 B)-5 a^3 (3 A-13 B) \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x)}dx}{a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {\int \frac {3 a^3 (9 A-49 B)-5 a^3 (3 A-13 B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {\int \frac {3 a^3 (9 A-49 B)-5 a^3 (3 A-13 B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)}dx-5 a^3 (3 A-13 B) \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-5 a^3 (3 A-13 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3116

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\cos (c+d x)}dx\right )-5 a^3 (3 A-13 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )-5 a^3 (3 A-13 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-5 a^3 (3 A-13 B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^3}-\frac {\frac {\frac {3 a^3 (9 A-49 B) \left (\frac {2 \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )-\frac {10 a^3 (3 A-13 B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}-\frac {5 a^2 (3 A-13 B) \sin (c+d x)}{d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)}}{3 a^2}-\frac {2 a (3 A-8 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^2}}{10 a^2}\)

Input:

Int[(A + B*Sec[c + d*x])/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3),x]
 

Output:

((A - B)*Sin[c + d*x])/(5*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^3) - ( 
(-2*a*(3*A - 8*B)*Sin[c + d*x])/(3*d*Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x 
])^2) + ((-5*a^2*(3*A - 13*B)*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*(a + a*C 
os[c + d*x])) + ((-10*a^3*(3*A - 13*B)*EllipticF[(c + d*x)/2, 2])/d + 3*a^ 
3*(9*A - 49*B)*((-2*EllipticE[(c + d*x)/2, 2])/d + (2*Sin[c + d*x])/(d*Sqr 
t[Cos[c + d*x]])))/(2*a^2))/(3*a^2))/(10*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3433
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(d + 
c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(684\) vs. \(2(204)=408\).

Time = 4.32 (sec) , antiderivative size = 685, normalized size of antiderivative = 3.10

method result size
default \(\text {Expression too large to display}\) \(685\)

Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x,method=_RETURNV 
ERBOSE)
 

Output:

1/60*(-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2 
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(15*A*EllipticF(cos(1/2* 
d*x+1/2*c),2^(1/2))-27*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-65*B*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))+147*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2) 
))*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+4*(sin(1/2*d*x+1/2*c)^2)^(1/2)* 
(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2* 
c)^2)^(1/2)*(15*A*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-27*A*EllipticE(cos 
(1/2*d*x+1/2*c),2^(1/2))-65*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+147*B* 
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/ 
2*c)-2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(-2*s 
in(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(15*A*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))-27*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-65*B*Elliptic 
F(cos(1/2*d*x+1/2*c),2^(1/2))+147*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))) 
*cos(1/2*d*x+1/2*c)+12*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2 
)*(9*A-49*B)*sin(1/2*d*x+1/2*c)^8-2*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1 
/2*c)^2)^(1/2)*(147*A-817*B)*sin(1/2*d*x+1/2*c)^6+6*(-2*sin(1/2*d*x+1/2*c) 
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(43*A-248*B)*sin(1/2*d*x+1/2*c)^4-(-2*sin(1 
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(69*A-439*B)*sin(1/2*d*x+1/2*c 
)^2)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.10 (sec) , antiderivative size = 521, normalized size of antiderivative = 2.36 \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx =\text {Too large to display} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="fricas")
 

Output:

-1/60*(2*(3*(9*A - 49*B)*cos(d*x + c)^3 + 2*(33*A - 188*B)*cos(d*x + c)^2 
+ 5*(9*A - 59*B)*cos(d*x + c) - 60*B)*sqrt(cos(d*x + c))*sin(d*x + c) + 5* 
(sqrt(2)*(3*I*A - 13*I*B)*cos(d*x + c)^4 + 3*sqrt(2)*(3*I*A - 13*I*B)*cos( 
d*x + c)^3 + 3*sqrt(2)*(3*I*A - 13*I*B)*cos(d*x + c)^2 + sqrt(2)*(3*I*A - 
13*I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x 
+ c)) + 5*(sqrt(2)*(-3*I*A + 13*I*B)*cos(d*x + c)^4 + 3*sqrt(2)*(-3*I*A + 
13*I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-3*I*A + 13*I*B)*cos(d*x + c)^2 + sqrt 
(2)*(-3*I*A + 13*I*B)*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c 
) - I*sin(d*x + c)) + 3*(sqrt(2)*(-9*I*A + 49*I*B)*cos(d*x + c)^4 + 3*sqrt 
(2)*(-9*I*A + 49*I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-9*I*A + 49*I*B)*cos(d*x 
 + c)^2 + sqrt(2)*(-9*I*A + 49*I*B)*cos(d*x + c))*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt(2)*(9* 
I*A - 49*I*B)*cos(d*x + c)^4 + 3*sqrt(2)*(9*I*A - 49*I*B)*cos(d*x + c)^3 + 
 3*sqrt(2)*(9*I*A - 49*I*B)*cos(d*x + c)^2 + sqrt(2)*(9*I*A - 49*I*B)*cos( 
d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
 I*sin(d*x + c))))/(a^3*d*cos(d*x + c)^4 + 3*a^3*d*cos(d*x + c)^3 + 3*a^3* 
d*cos(d*x + c)^2 + a^3*d*cos(d*x + c))
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**3,x)
 

Output:

Timed out
 

Maxima [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="maxima")
 

Output:

Timed out
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorith 
m="giac")
 

Output:

integrate((B*sec(d*x + c) + A)/((a*sec(d*x + c) + a)^3*cos(d*x + c)^(7/2)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^3),x)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^3), x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {\left (\int \frac {\sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{4}}d x \right ) a +\left (\int \frac {\sqrt {\cos \left (d x +c \right )}\, \sec \left (d x +c \right )}{\cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{3}+3 \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )^{2}+3 \cos \left (d x +c \right )^{4} \sec \left (d x +c \right )+\cos \left (d x +c \right )^{4}}d x \right ) b}{a^{3}} \] Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x)
 

Output:

(int(sqrt(cos(c + d*x))/(cos(c + d*x)**4*sec(c + d*x)**3 + 3*cos(c + d*x)* 
*4*sec(c + d*x)**2 + 3*cos(c + d*x)**4*sec(c + d*x) + cos(c + d*x)**4),x)* 
a + int((sqrt(cos(c + d*x))*sec(c + d*x))/(cos(c + d*x)**4*sec(c + d*x)**3 
 + 3*cos(c + d*x)**4*sec(c + d*x)**2 + 3*cos(c + d*x)**4*sec(c + d*x) + co 
s(c + d*x)**4),x)*b)/a**3