\(\int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [516]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 175 \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {16 a (6 A+7 B) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {8 a (6 A+7 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{105 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a (6 A+7 B) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{35 d \sqrt {a+a \sec (c+d x)}}+\frac {2 a A \cos ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{7 d \sqrt {a+a \sec (c+d x)}} \] Output:

16/105*a*(6*A+7*B)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)+8/ 
105*a*(6*A+7*B)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/35* 
a*(6*A+7*B)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+2/7*a*A*c 
os(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.55 \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {\sqrt {\cos (c+d x)} (228 A+266 B+(141 A+112 B) \cos (c+d x)+6 (6 A+7 B) \cos (2 (c+d x))+15 A \cos (3 (c+d x))) \sqrt {a (1+\sec (c+d x))} \sin (c+d x)}{210 d (1+\cos (c+d x))} \] Input:

Integrate[Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]) 
,x]
 

Output:

(Sqrt[Cos[c + d*x]]*(228*A + 266*B + (141*A + 112*B)*Cos[c + d*x] + 6*(6*A 
 + 7*B)*Cos[2*(c + d*x)] + 15*A*Cos[3*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x] 
)]*Sin[c + d*x])/(210*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.95 (sec) , antiderivative size = 192, normalized size of antiderivative = 1.10, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3434, 3042, 4503, 3042, 4292, 3042, 4292, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a \sec (c+d x)+a} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{7/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x) a+a} (A+B \sec (c+d x))}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {5}{2}}(c+d x)}dx+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4292

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4292

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {4}{5} \left (\frac {2}{3} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

\(\Big \downarrow \) 4291

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{7} (6 A+7 B) \left (\frac {2 a \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {4}{5} \left (\frac {4 a \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\right )\right )+\frac {2 a A \sin (c+d x)}{7 d \sec ^{\frac {5}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}\right )\)

Input:

Int[Cos[c + d*x]^(7/2)*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*A*Sin[c + d*x])/(7*d*Sec[c + d 
*x]^(5/2)*Sqrt[a + a*Sec[c + d*x]]) + ((6*A + 7*B)*((2*a*Sin[c + d*x])/(5* 
d*Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (4*((2*a*Sin[c + d*x])/(3 
*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (4*a*Sqrt[Sec[c + d*x]]* 
Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]])))/5))/7)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4292
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)], x_Symbol] :> Simp[a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a 
+ b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n))   Int[Sqrt[a + b*Csc 
[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && 
 EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)] && IntegerQ[2*n]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 
Maple [A] (verified)

Time = 1.10 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.55

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (15 \cos \left (d x +c \right )^{3}+18 \cos \left (d x +c \right )^{2}+24 \cos \left (d x +c \right )+48\right ) A +\left (21 \cos \left (d x +c \right )^{2}+28 \cos \left (d x +c \right )+56\right ) B \right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{105 d \left (1+\cos \left (d x +c \right )\right )}\) \(97\)

Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x,method=_RET 
URNVERBOSE)
 

Output:

2/105/d*sin(d*x+c)*((15*cos(d*x+c)^3+18*cos(d*x+c)^2+24*cos(d*x+c)+48)*A+( 
21*cos(d*x+c)^2+28*cos(d*x+c)+56)*B)*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^( 
1/2)/(1+cos(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 99, normalized size of antiderivative = 0.57 \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \, {\left (15 \, A \cos \left (d x + c\right )^{3} + 3 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 4 \, {\left (6 \, A + 7 \, B\right )} \cos \left (d x + c\right ) + 48 \, A + 56 \, B\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algo 
rithm="fricas")
 

Output:

2/105*(15*A*cos(d*x + c)^3 + 3*(6*A + 7*B)*cos(d*x + c)^2 + 4*(6*A + 7*B)* 
cos(d*x + c) + 48*A + 56*B)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(c 
os(d*x + c))*sin(d*x + c)/(d*cos(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 418 vs. \(2 (151) = 302\).

Time = 0.26 (sec) , antiderivative size = 418, normalized size of antiderivative = 2.39 \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algo 
rithm="maxima")
 

Output:

1/840*(3*sqrt(2)*(105*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c)))*sin(7/2*d*x + 7/2*c) + 35*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c), c 
os(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 7*cos(2/7*arctan2(sin(7/2*d*x 
 + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 105*cos(7/2*d*x + 
 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) - 35* 
cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7 
/2*c))) - 7*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x + 7/2*c), cos 
(7/2*d*x + 7/2*c))) + 10*sin(7/2*d*x + 7/2*c) + 7*sin(5/7*arctan2(sin(7/2* 
d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 35*sin(3/7*arctan2(sin(7/2*d*x + 7/ 
2*c), cos(7/2*d*x + 7/2*c))) + 105*sin(1/7*arctan2(sin(7/2*d*x + 7/2*c), c 
os(7/2*d*x + 7/2*c))))*A*sqrt(a) - 14*sqrt(2)*(5*(6*sin(2*d*x + 2*c) + sin 
(d*x + c))*cos(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - (30*cos(2*d*x + 
2*c) + 5*cos(d*x + c) + 6)*sin(5/2*arctan2(sin(d*x + c), cos(d*x + c))) - 
5*sin(3/2*arctan2(sin(d*x + c), cos(d*x + c))) - 30*sin(1/2*arctan2(sin(d* 
x + c), cos(d*x + c))))*B*sqrt(a))/d
 

Giac [A] (verification not implemented)

Time = 0.22 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.14 \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \, {\left (105 \, \sqrt {2} A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 105 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (105 \, \sqrt {2} A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 175 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (147 \, \sqrt {2} A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 119 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + {\left (27 \, \sqrt {2} A a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 49 \, \sqrt {2} B a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{105 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {7}{2}} d} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x, algo 
rithm="giac")
 

Output:

2/105*(105*sqrt(2)*A*a^4*sgn(cos(d*x + c)) + 105*sqrt(2)*B*a^4*sgn(cos(d*x 
 + c)) + (105*sqrt(2)*A*a^4*sgn(cos(d*x + c)) + 175*sqrt(2)*B*a^4*sgn(cos( 
d*x + c)) + (147*sqrt(2)*A*a^4*sgn(cos(d*x + c)) + 119*sqrt(2)*B*a^4*sgn(c 
os(d*x + c)) + (27*sqrt(2)*A*a^4*sgn(cos(d*x + c)) + 49*sqrt(2)*B*a^4*sgn( 
cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x 
 + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 + a)^(7/2)*d)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^{7/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \] Input:

int(cos(c + d*x)^(7/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(cos(c + d*x)^(7/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\sqrt {a}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)),x)
 

Output:

sqrt(a)*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**3*sec 
(c + d*x),x)*b + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x 
)**3,x)*a)