\(\int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx\) [536]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 197 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\frac {a^{5/2} (2 A+5 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {a^3 (14 A+3 B) \sin (c+d x)}{3 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {a^2 (2 A-3 B) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d \sqrt {\cos (c+d x)}}+\frac {2 a A \sqrt {\cos (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d} \] Output:

a^(5/2)*(2*A+5*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d 
*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+1/3*a^3*(14*A+3*B)*sin(d*x+c)/d/cos(d*x+c)^ 
(1/2)/(a+a*sec(d*x+c))^(1/2)-1/3*a^2*(2*A-3*B)*(a+a*sec(d*x+c))^(1/2)*sin( 
d*x+c)/d/cos(d*x+c)^(1/2)+2/3*a*A*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)* 
sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 0.42 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.59 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\frac {a^3 \left (3 (2 A+5 B) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}+\sqrt {1-\sec (c+d x)} (16 A+6 B+2 A \cos (c+d x)+3 B \sec (c+d x))\right ) \sin (c+d x)}{3 d \sqrt {-1+\cos (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x 
]),x]
 

Output:

(a^3*(3*(2*A + 5*B)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]] + Sq 
rt[1 - Sec[c + d*x]]*(16*A + 6*B + 2*A*Cos[c + d*x] + 3*B*Sec[c + d*x]))*S 
in[c + d*x])/(3*d*Sqrt[-1 + Cos[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.28 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.04, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {3042, 3434, 3042, 4505, 27, 3042, 4506, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{5/2} (A+B \sec (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2}{3} \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a (2 A+B)-a (2 A-3 B) \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a (2 A+B)-a (2 A-3 B) \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a (2 A+B)-a (2 A-3 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4506

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\int \frac {\sqrt {\sec (c+d x) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x)}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x)}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4503

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \left (3 a^2 (2 A+5 B) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \left (3 a^2 (2 A+5 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \left (\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {6 a^2 (2 A+5 B) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

\(\Big \downarrow \) 222

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{3} \left (\frac {1}{2} \left (\frac {6 a^{5/2} (2 A+5 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\right )\)

Input:

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*a*A*(a + a*Sec[c + d*x])^(3/2)*S 
in[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + (-((a^2*(2*A - 3*B)*Sqrt[Sec[c + d 
*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/d) + ((6*a^(5/2)*(2*A + 5*B)*A 
rcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + (2*a^3*(14*A 
+ 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/2)/3 
)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(365\) vs. \(2(169)=338\).

Time = 2.57 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.86

method result size
default \(-\frac {\left (\sqrt {2}\, A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (6 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (15 \cos \left (d x +c \right )^{2}+15 \cos \left (d x +c \right )\right )+\sqrt {2}\, A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (6 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (15 \cos \left (d x +c \right )^{2}+15 \cos \left (d x +c \right )\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right ) \left (-8 \cos \left (d x +c \right )-64\right ) A +\left (-24 \cos \left (d x +c \right )-12\right ) \sin \left (d x +c \right ) B \right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, a^{2}}{12 d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}\) \(366\)

Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x,method=_RET 
URNVERBOSE)
 

Output:

-1/12/d*(2^(1/2)*A*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d* 
x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))*(6*cos(d*x+c)^2+6*cos(d*x+c))+2^(1/2)*B 
*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+cos 
(d*x+c)))^(1/2))*(15*cos(d*x+c)^2+15*cos(d*x+c))+2^(1/2)*A*(-2/(1+cos(d*x+ 
c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2)) 
*(6*cos(d*x+c)^2+6*cos(d*x+c))+2^(1/2)*B*(-2/(1+cos(d*x+c)))^(1/2)*arctan( 
1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2))*(15*cos(d*x+c)^2+ 
15*cos(d*x+c))+sin(d*x+c)*cos(d*x+c)*(-8*cos(d*x+c)-64)*A+(-24*cos(d*x+c)- 
12)*sin(d*x+c)*B)*(a*(1+sec(d*x+c)))^(1/2)*a^2/cos(d*x+c)^(1/2)/(1+cos(d*x 
+c))
 

Fricas [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 449, normalized size of antiderivative = 2.28 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\left [\frac {4 \, {\left (2 \, A a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {2 \, {\left (2 \, A a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 3 \, {\left ({\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algo 
rithm="fricas")
 

Output:

[1/12*(4*(2*A*a^2*cos(d*x + c)^2 + 2*(8*A + 3*B)*a^2*cos(d*x + c) + 3*B*a^ 
2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) 
 + 3*((2*A + 5*B)*a^2*cos(d*x + c)^2 + (2*A + 5*B)*a^2*cos(d*x + c))*sqrt( 
a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 
 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^2 + d*cos(d*x 
+ c)), 1/6*(2*(2*A*a^2*cos(d*x + c)^2 + 2*(8*A + 3*B)*a^2*cos(d*x + c) + 3 
*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x 
 + c) + 3*((2*A + 5*B)*a^2*cos(d*x + c)^2 + (2*A + 5*B)*a^2*cos(d*x + c))* 
sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(co 
s(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*co 
s(d*x + c)^2 + d*cos(d*x + c))]
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c)),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2589 vs. \(2 (169) = 338\).

Time = 0.34 (sec) , antiderivative size = 2589, normalized size of antiderivative = 13.14 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algo 
rithm="maxima")
 

Output:

1/12*(sqrt(2)*(30*a^2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c)))*sin(3/2*d*x + 3/2*c) - 30*a^2*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 3*sqrt(2)*a^2*log(2*cos(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arc 
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sqrt(2)*a^2*log( 
2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos( 
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 3*sqrt(2)*a 
^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 
2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt( 
2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2 
)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sq 
rt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 
2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2 
*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) 
 + 4*a^2*sin(3/2*d*x + 3/2*c) + 30*a^2*sin(1/3*arctan2(sin(3/2*d*x + 3/...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 414 vs. \(2 (169) = 338\).

Time = 0.61 (sec) , antiderivative size = 414, normalized size of antiderivative = 2.10 \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x, algo 
rithm="giac")
 

Output:

1/6*(3*(2*A*a^(5/2)*sgn(cos(d*x + c)) + 5*B*a^(5/2)*sgn(cos(d*x + c)))*log 
(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 
 - a*(2*sqrt(2) + 3))) - 3*(2*A*a^(5/2)*sgn(cos(d*x + c)) + 5*B*a^(5/2)*sg 
n(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(9*sqrt(2)*A*a^4*sgn(cos(d* 
x + c)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)) + (7*sqrt(2)*A*a^4*sgn(cos(d*x 
 + c)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/ 
2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) + 12*(3*sqrt(2)*(sqrt( 
a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(7/2)* 
sgn(cos(d*x + c)) - sqrt(2)*B*a^(9/2)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\int {\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \] Input:

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2),x)
 

Output:

int(cos(c + d*x)^(3/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2), x)
 

Reduce [F]

\[ \int \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x)) \, dx=\sqrt {a}\, a^{2} \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}d x \right ) b +2 \left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right ) \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c)),x)
 

Output:

sqrt(a)*a**2*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)*s 
ec(c + d*x)**3,x)*b + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c 
+ d*x)*sec(c + d*x)**2,x)*a + 2*int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d* 
x))*cos(c + d*x)*sec(c + d*x)**2,x)*b + 2*int(sqrt(sec(c + d*x) + 1)*sqrt( 
cos(c + d*x))*cos(c + d*x)*sec(c + d*x),x)*a + int(sqrt(sec(c + d*x) + 1)* 
sqrt(cos(c + d*x))*cos(c + d*x)*sec(c + d*x),x)*b + int(sqrt(sec(c + d*x) 
+ 1)*sqrt(cos(c + d*x))*cos(c + d*x),x)*a)